

1 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

A Survey on Spatial Indexing

Shaik Abdul Nusrath Begum, K. P. Supreethi
Department of Computer Science and Engineering

JNTUH College of Engineering Hyderabad (Autonomous)

Abstract

Spatial information processing has been a centre of attention of research in the previous

decade. In spatial databases, data related with spatial coordinates and extents are retrieved

based on spatial proximity. A large number of spatial indexes have been proposed to make

ease of efficient indexing of spatial objects in large databases and spatial data retrieval. The

goal of this paper is to review the advance techniques of the access methods. This paper tries

to classify the existing multidimensional access methods, according to the types of indexing,

and their performance over spatial queries. K-d trees out performs quad tress without

requiring additional memory usage.

Keywords: spatial data, spatial index, Object Directed Decomposition

INTRODUCTION

The main purpose of spatial access

methods is to support efficient selection of

objects based on spatial properties. Spatial

access methods are also used to implement

efficiently map overlays and spatial joins.

Conventional databases are related to non-

spatial data which are not referenced

(directly or indirectly) to multidimensional

space such as maps, geometric information

etc. Generally, non-spatial data are one

dimensional and independent. The

multidimensional data cannot be stored in

conventional database approaches. So the

requirement of spatial database systems

has emerged.

A spatial database system (SDS) [1] is a

software system used for storage and

retrieval of data and provides tools for

referencing the spatial data (providing at

least spatial indexing and spatial join

methods).In spatial databases, data is

associated with spatial coordinates and is

retrieved based on spatial proximity.

A spatial data is a data that is present in 2-

D or 3D or even a higher dimensional

space. (Or) A spatial data object may be

composed of a single point or several

thousands of polygons, arbitrarily

distributed across space. A spatial data has

following characteristics [2]

 Complex structure

 Dynamic

 No standard algebra defined on spatial

data

 Spatial operations are not closed

 Computational cost vary among spatial

database operations (Expensive)

Spatial indexing and clustering methods

must be taken in account. Without a spatial

index, each object in the database has to be

tested to tell whether it meets the spatial

selection criterion; a „full table scan‟ in a

relational database. Full Table Scan is also

known as Sequential Scan. In Full Table

Scan the database is scanned where each

row of the table is read in a sequential

(serial) order and the columns encountered

are tested for the validity of a condition.

As spatial datasets are typically very large,

such checking is not agreeable in practice

for interactive use and most other

applications. Therefore, a spatial index is

requirement to find the required objects

2 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

efficiently without considering every

object. [3]

In some cases the total dataset fits in main

memory, it is enough to know the address

of the requested objects. As the main

memory storage allows random access and

does not have significant delays. However,

most spatial datasets are so large that they

cannot reside in the main memory of the

computer and must be stored in secondary

memory, such as its hard disk.

Clustering is desirable for group those

objects which are often requested together.

Otherwise, many different disk pages will

have to be fetched which results in slow

response. In a spatial context, clustering

infers that objects which are closer in

reality are also stored closer in memory.

Many strategies for clustering objects in

spatial databases adopt some form of

„SFC‟ by ordering objects according to

their arrangement along a path that

traverses all parts of the space.

Most of the indexes are based on the

principle of divide and conquer. Indexing

structures typically follow hierarchical

approach. This approach is obviously

suitable for a database system where the

memory space is limited, and the pruning

of a search is performed such that the more

detail to be examined. Hierarchical

structures are proficient in range

searching.

Indexing in spatial database is different

from conventional databases as the data

stored in SDS is multi-dimensional objects

and its associated coordinates. Search

operation also varies as the spatial object

properties (Geometry: location, size,

shape. Spatial relationships: distribution,

neighborhood, proximity) are considered

not the attribute values.

Principles of Spatial Data Access and

Search

The key principle leading the searching

algorithm is dividing of the search space

into regions. Considered simply, this

consists of placing data into uniquely

identifiable boxes or cells. These methods

are categorized by considering spatial

indexing because with each block the

information is stored such that the block is

occupied by the spatial object or part of

the object is known.

Jones (1997) distinguishes two types of

space decomposition or space partitioning:

[4] [55] as shown in fig 1.

 Regular decomposition

 Object-directed decomposition.

Fig 1: Space Decomposition

Spatial Partitioning

Object-Directed

Decomposition

Regular

Decomposition

Hybrid Indexing

3 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

REGULAR DECOMPOSITION

It is also known as space driven index. The

space is divided in a regular or semi-

regular manner independent of the

distribution of objects (i.e., indirectly

related to the objects in the space). Objects

are mapped to the cells according to some

geometric criterion.

Fig 2: Space Driven Index

Object Directed Decomposition

Object Directed Decomposition is also

known as data driven index. The division

of the index space is determined directly

by the objects. This technique divides the

space by means of the coordinates of

individual data points or of the extents or

bounding rectangles or spatial objects

which are to be stored. There is a

multiplicity of object-directed

decomposition search methods. The most

common are:

 Binary tree

 R-tree

4 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Fig 3: Data Driven Index

Object-Directed Decomposition (Data

Driven Indexes)

Data Driven Indexing methods also known

as Object-Directed Decomposition. Here,

the objects decide the division of space

(e.g. the 2D space containing the lines)

into regions called buckets. They are

commonly known as bucketing methods.

There are some principal methods

decomposing the space from which the

data is drawn.

One approach to data driven indexes is for

partition the data by relating divide-and-

conquer strategies where individual data

points or lines can be selected to subdivide

the data space into consecutively smaller

half-spaces (Binary-tree). Another method

buckets the data based on the idea of a

minimum bounding (or enclosing)

rectangle (R-tree).

Such strategies generate hierarchical or

tree data structures, in which traversing

down each branch of the tree should result

in reducing the volume of data at each

stage. The branching factor defines the

number of branches at each split and the

number of leaves at the end of each

branch.

5 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Binary-Tree based Indexing Techniques

The binary search tree is a basic data

structure for representing data items whose

index values are organized by some linear

order. The idea of repeatedly dividing the

data space has been adopted and

generalized in many sophisticated indexes.

K-D-Tree [5] [54] a binary search tree that

stores points of the k-dimensional space.

At each intermediate node, the k-d-tree

divides the k-dimensional space in two

parts by a (k-1)-dimensional hyperplane.

The direction of the hyperplane, i.e. the

dimension based on which the division is

made, alternates between the k possibilities

from one tree level to the next. Each

splitting hyperplane contains at least one

point, which is used as the hyperplanes

representation in the tree.

Adaptive K-D-Tree [6] A better version of

k-d tree is the adaptive k-d-tree. While

dividing, the adaptive k-d-tree selects a

hyperplane that divides the space in two

sub-spaces with equivalent number of

points. The hyperplanes are still parallel to

axes, but they do not contain a point, and

they do not have to firmly alternate.

Interior nodes of the tree hold the

dimension (e.g. x or y), and the coordinate

of the corresponding split. All points are

kept at the leaves, and a leave can contain

up to a fixed number of points, if this

number is exceeded, a split takes place.

K-D-B-Tree [7] pools properties of both

the adaptive k-d-tree and the B-tree. It uses

hyperplanes to split the space arbitrarily

more than one hyperplanes divide a tree

node (depending on the tree‟s storage

utilization) in a equivalent number of

disjoint regions. All nodes of the tree

relate to disk pages. A leaf node stores the

data points that are placed in the respective

partition the leaf states. Like the B-tree,

the K-D-B-Tree is perfectly balanced,

however, it cannot guarantee storage

utilization.

hB-Tree [8](holey brick B-tree)is a new

multi-attribute index structure. It allows the

data space to be holey, allowing removal

of any data subspace from a data space.

The concept of holey bricks has been used

in as an effort to improve the clustering of

data in a kd-tree known as the BD-tree.

The hB-tree structure is based on the K-

D-B-tree structure, but it allows the data

space associated with a node to be non-

rectangular and it uses kd-trees for space

representation in its internal nodes. It is a

height-balanced tree. Here, the leaf nodes

are known as data nodes and the internal

node are known as index nodes. An index

node data space is a union of its child node

subspaces which are obtained through kd-

tree recursive division.

hBπ-Tree [9]The hB-tree is extended to

allow for concurrency and recovery by

transforming it in such a way that it

becomes a special case of the π-tree.

Consequently, the new structure is called

the hBπ-tree. As a result of these

modifications, the new structure can

directly take advantage of the π-tree node

consolidation algorithm. The lack of such

an algorithm has been one of the major

drawback of the hB-tree. Furthermore, the

hBπ-tree corrects a flaw in the

splitting/posting algorithm of the hB-tree

that may occur for more than three index

levels. The essential idea of the correction

is to impose limitations on the splitting/

posting algorithms, which in turn affects

the space occupancy.

4D-Tree [10] is used to store a bounding

box by keeping the minimum and

maximum points together in one 4D point.

This technique can be used to simplify

other geometric data structures that are

originally suitable only for storing and

retrieving points.

6 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

GBD-Tree [11] The BD-tree is prolonged

to a balanced multi-way tree called the

GBD-tree (generalized BD-tree). In

addition to a DZ expression, a bounding

rectangle is used to demonstrate data space

that confines the objects whose centroids

fall inside the region defined by the DZ

expression. Centroids of objects are used

to specify placement of objects in the

correct bucket. While a DZ expression is

used to confirm the position in the tree

structure where an entity is found based on

its centroid, a bounding rectangle is used

in connection search.

LSD-tree [12] As an enhancement to the

fixed size space partitioning of the grid

files, a binary tree, called the Local Split

Decision tree (LSD-tree) that supports

arbitrary split position was proposed. A

split position can be chosen such that it is

optimal with respect to the current cell.

The directory of an LSD-tree is similar to

that maintained by the kd-tree. Each node

of the LSD-tree represents one split and

stores the split dimension and position,

and each leaf node points to a data bucket.

BSP Tree [13] a data structure which is

not built on a rectangular division of

space. It uses the line segments of the

polylines and the edges of the polygons to

split the space in a recursive manner. The

BSP-tree (Binary Space Partitioning)

imitates this recursive division of space.

Each time a (sub) space is divided into two

subspaces by a so-called splitting

primitive, a equivalent node is added to the

tree. The BSP-tree implies an organization

of space by a set of convex subspaces in a

binary tree. This tree is beneficial during

spatial search and other spatial operations.

Skd-Tree [14] Spatial kd-tree (skd-tree) in

an attempt to avoid object duplication and

object mapping. At each node of a kd-tree,

a value (the discriminator value) is

selected in one of the dimensions to

partition a k-dimensional space into two

subspaces. The skd-tree allows regions to

overlap.

Bkd-tree [15] is an indexing technique for

large multidimensional point data sets. The

Bkd-tree is an I/O-efficient dynamic data

structure based on the kd-tree. The Bkd-

tree consists of a set of balanced kd-trees.

Each kd-tree is laid out (or blocked) on

disk similarly to the way the K-D-B-tree is

laid out. To store a given kd-tree on disk,

we first modify the leaves to hold points,

instead of just one. In this way, points are

packed in blocks.

B-tree based Indexing Techniques

B+-trees have been commonly used in data

intensive systems to facilitate query

retrieval. The widespread acceptance of

the B +-tree is its height-balanced

characteristic, making it best for disk I/O

where data transfer is in the unit of page. It

has become an underlying structure for

many new indexes. In this section, we

discuss indexes based on the concept of

the hierarchical structure of B +-trees.

R-Trees [16] [54] [55] are hierarchical

data structures, intended for efficient

indexing of multidimensional objects with

spatial extent. R-trees are used to store,

rather than the original space objects, their

minimum boundary boxes (MBBs). The

MBB of an n-dimensional object is

defined to be the minimum n-dimensional

rectangle that contains the original object.

Similar to B-trees, the R-trees are balanced

and they ensure proficient storage

utilization. Each R-tree node relates to a

disk page and an n-dimensional rectangle.

Each non-leaf node holds entries of the

form (ref, rect), where ref refers to the

address of a child node and rect refers to

the MBB of all entries in that child node.

Leaves hold entries of the same format,

where ref points to a database object, and

rect is the MBB of that object.

7 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Greene’s [17] The coverage of covering

rectangles and overlaps between them in

the R-tree are affected by the objects are

being dividing into groups by its splitting

algorithm. In Greene‟s splitting algorithm,

two most distant rectangles are selected

and for each dimension, the separation is

calculated. Each separation is normalized

by dividing it with the interval of the

covering rectangle on the same dimension,

instead of by the total width of the entire

group. Along the dimension with the largest

normalized separation, rectangles are

ordered on the lower coordinate. The list is

then divided into two groups, with the first

(M+1)/2 rectangles into the first group and

the rest into the other.

R+-Tree [18] [55] is introduced as a way

to overcome the problem of inefficient

searching that arises when sibling nodes

overlap in the R-tree. As a direct solution

to these problems they use clipping, i.e.

there is no overlap between in-between

nodes of the tree at the same level, and

objects that intersect more than one MBB

at a specific level are clipped and stored on

several different pages. As a result, point

queries on the R+-tree require traversing

only one path of the tree. The price to pay

is the increase of storage requirement of

the tree.

R*-Tree [19] [55] this variety presents a

new insertion policy, that significantly

improves the performance of the tree. The

key objective of this policy is to minimize

the overlap region among sibling nodes in

the tree. A straightforward benefit of this is

the minimization of the tree paths that are

traversed at an object search.

TV Tree [20] [54] (Telescopic Vector) tree

is dynamically contracting and spreading

feature vectors. Like any other tree, it

arranges the data in a hierarchical

structure: Objects (i.e. feature vectors) are

grouped into leaf nodes of the tree, and the

explanation of their Minimum Bounding

Region (MBR) is stored in its parent node.

Parent nodes are recursively grouped too,

until the root is formed.

Packed R-Tree [21] [55] Packed R-trees

were introduced to minimize the coverage

and overlap of rectangles by building an R-

tree statically. It was shown that for point

data, it is possible to divide points into

groups such that the bounding rectangles

of these groups do not overlap. However,

to achieve zero overlap may require

rotating the orientation of the entire

database, which may not be possible or

beneficial. Further, zero overlap is

achievable only at the leaf level of the R-

tree with static construction. For bounding

rectangles associated with the non-leaf

nodes, overlap is sometimes unavoidable.

The main objective of the algorithm is to

reduce the storage space, the coverage and

overlap of rectangles, in order to improve

the search efficiency.

Cell Tree with Oversized shelves [22] The

fragmentation effect is even more serious

when the database becomes more

populated. Each split of a node leads to a

decrease in the node data space but to an

increase in the number of nodes per object.

To overcome the fragmentation and

duplication problems in cell tree, proposed

to store oversized objects which may

greatly increase the number of object

identifiers being stored in the leaf nodes in

separate "oversize shelves". These

oversize shelves are data nodes related to

interior nodes in the cell-tree, in one way,

creating the tree to be not height-balanced.

The assignment of a new object in the sub-

tree or oversize shelf requires some

optimization. The oversize page shelf can

be spread out and a split on this shelf is

essential.

P Tree [23] (J) In various applications,

intervals are not a good estimate of the

data objects enclosed. In order to combine

the elasticity of polygon-shaped containers

8 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

with the ease of the R-tree autonomously

proposed different variations of polyhedral

trees or P-trees.

RD Tree [24] is a variant of R-Tree, a

popular access method for spatial data. RD

stands for "Russian Doll", which describes

the transitive containment relation that is

fundamental to the tree structure.

SS-Tree [25] is an index structure

designed for similarity indexing of

multidimensional point data. It is an

enhancement of the R*-tree and improves

the performance of nearest neighbor

queries by altering the following respects.

Initially, it employs bounding spheres

rather than bounding rectangles for the

region shape. Secondly, the SS-tree

modifies the forced reinsertion mechanism

of the R*- tree. When a node or a leaf is

full, the R*- tree reinserts a portion of its

entries rather than splits it, unless

reinsertion has been made on the same tree

level. On the other hand, the SS-tree

reinserts entries unless reinsertion has been

made at the same node or leaf. This

promotes the dynamic reorganization of

the tree structure.

SR-Tree [26] The structure of the SR-tree

is based on that of the R-tree, in common

with the R*-tree and the SS-tree, and

corresponds to the nested hierarchy of

regions. However, the distinctive feature

of the SR-tree is that it specifies a region

by the intersection of the bounding sphere

and the bounding rectangle of underlying

points. Incorporating bounding rectangles

permits neighborhoods to be partitioned

into smaller regions than the SS-tree and

improves the disjointness among regions.

This enhances the performance on nearest

neighbor queries especially for high

dimensional and non-uniform data which

can be practical in actual image/video

similarity indexing.

Hilbert R-Tree [27] uses the center point

Hilbert value of the MBR to organize the

objects. When grouping objects (based on

their Hilbert value), they form an entry in

their parent node which contains both the

union of all MBRs of the objects and the

largest Hilbert value of the objects. Again,

this is repeated on the higher levels until a

single root is obtained.

Parallel R-Tree [28] The underlying file

structure is the R-tree. It is a server for

spatial objects designed on a parallel

architecture to achieve high throughput,

under concurrent range queries. The first

step is to decide on the hardware

architecture. Then to distribute an R-tree

over multiple disks.

2+3 R-Tree [29] The two-dimensional

points would represent the current spatial

information about the data points, whereas

the three-dimensional lines would the

represent (piecewise) the historical

information. In the 2+3 R-tree, even

though the end time of an object's position

is unknown, it is indexed under a two-

dimensional R- tree, keeping the start time

of its position together with its id. Note

that the original R- tree (or any of its

derivatives) keep only the object's id (or a

pointer to the actual data record) and its

MBR in the leaf nodes. The two-

dimensional R-tree used in this method is

thus marginally altered.

2D R-Tree [30] The 2DR-tree is a height-

balanced, hierarchical spatial data structure

that uses two-dimensional nodes. An MBR

is stored in an appropriate location with

respect to all other MBRs in the node.

Using two-dimensional nodes allows

spatial relationships to be preserved. The

spatial relationships supported in the 2DR-

tree are north, northeast, east, southeast,

south, southwest, west and northwest. A

spatial relationship is defined between two

objects using the centroids of their MBRs.

9 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

3D R-Tree [31] A spatiotemporal access

structure. It uses standard R-trees to index

multimedia data. It is widely used for

indexing of spatial data in several

applications, such as Geographic

Information Systems (GIS), CAD and

VLSI design, etc. Here R-trees are adapted

in order to index either spatial, temporal or

spatio-temporal occurrences of actors and

relationships between them.

DBM-Tree (Density-Based Metric tree)

[32] The DBM-tree is a dynamic MAM that

grows bottom-up. The objects of the

dataset are grouped into fixed size disk

pages, each page corresponding to a tree

node. An object can be stored at any level

of the tree. Its main intent is to organize

the objects in a hierarchical structure using

a representative object as the center of each

minimum bounding region that covers the

objects in a sub-tree. An object can be

stored in a node if the covering radius of

the representative covers it.

DF-Tree [33] a new and efficient MAM.

The main approach is to use global

representatives for the whole tree. These

global representatives will work together

with the representatives of the nodes in

order to decrease the number of distance

calculations.

Approximating and Eliminating Search

Algorithm [34] (AESA) makes use of

metric properties of given distance. The

algorithm consists of

 An efficient elimination rules and

 An appropriate search for available

rules by which maximum efficiency is

maintained.

For N prototypes, it uses pre-computation

of triangular array of (N2-N)/2 distances

between prototypes. By which Nearest

Neighbour (NN) Search is carried out

through a very small number of distance

computations. Furthermore, for large N,

this number of computations tends to be

independent of N (asymptotic constant

time- complexity). However, the great

storage complexity and preprocessing time

(O (N2)), severely limit the practical use

of the AESA for large sets of prototypes.

LAESA [35] (Linear AESA) a new

version of the AESA, which uses a linear

array of distance, but is strictly based on

metric arguments like the original AESA.

The technique starts by choosing "Base

Prototypes" (BP) from the given set of

prototypes which are comparatively a

small set there by calculating the distances

between these BP's and the finishing set of

prototypes.

Tree LAESA [36] (TLAESA) is based on

the LAESA which reduces its average time

complexity to sub-linear. The TLAESA

algorithm consists of two parts: (1)

preprocessing and (2) search. In the

preprocessing algorithm, two structures are

built: a binary search tree storing all

prototypes and a table of distances. The

search algorithm is essentially a traversal

of the binary tree where the table of

distances is used in order to avoid the

exploration of some branches of the tree.

Approximating k-LAESA [37] (Ak-

LAESA) is a fast classifier for general

metric spaces (no vector space required)

based on the LAESA algorithm The aim is

to achieve classification rates similar to

those of a k-NN classifier, using k

neighbors that may not be the k-NNs and

preserving the main properties of LAESA

(distance computations and time and space

complexities). It gets error rates very close

to those of a k-NN classifier, while

computing a much lower number of

distances (the number of distances of the

Ak-LAESA algorithm is accurately the

same that the calculated by the LAESA

algorithm).

10 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

ROAESA [38] (Reduced Overhead

AESA), related to both AESA and

LAESA, that decreases this overhead cost

by using a heuristic to limit the set of

objects whose lower-bound distances dlo

are updated at each step of the algorithm.

Fixed Queries Trees [39] (FQ Trees) are

an evolution where the same pivot is used

for all the nodes of the same level of the

tree. In this case the pivot does not need to

belong to the sub-tree. The main goal of

this structure is to minimize the number of

element comparisons, as opposed to other

data structure operations (such as tree

traversal). This is especially important in

applications where computing distances

between two elements is a much more

expensive operation than, say following

pointers. This tree structure differs from

other tree structures where the keys on each

level of the tree are all the same, so we

have just one key per level. In other words,

which comparisons we make does not

depend on the results of previous

comparisons up the tree. Thus the name

fixed-queries tree or FQ-tree. A major

strength of FQ- trees is that the data

structure and the search algorithms are

independent of the distance function, as

long as it satisfies the triangle inequality.

Fixed Height fq-tree [40] (fhq-tree) A

variant called FQ Tree where all the leaves

are at the same depth h, regardless of the

bucket size

Fixed Queries Array [41] (FQA) has two

interesting properties. First, it is the first

data structure which is able to achieve a

sub linear (in the database size) number of

side computations without using any extra

space. Next, it is capable to trade number

of pivots k for their precision, so as to

enhance the usage of the available space.

FQA are based in a common idea: k pivots

are picked and each object is plotted to k

coordinates which are its distances to the

pivots. Later, the query q is also plotted

and if it varies from an object in more than

r along some coordinate then the element

is filtered out by the triangle inequality.

That is, if for some pivot pi and some

element v of the set it holds |d(q, pi) − d(v,

pi)| > r, then we know that d(q, v) > r

without need to evaluate d(v, q). The

elements that cannot be filtered out using

this rule are directly equated.

Sparse Spatial Selection [42] (SSS) is a

new pivot-based technique. The main

characteristic of this method is that it

guarantees a good pivot selection more

efficiently. In addition, SSS adapts itself to

the dimensionality of the metric space we

are working with, without being necessary

to specify in advance the number of pivots

to use. Furthermore, SSS is dynamic, that

is, it is capable to support object insertions

in the database efficiently, it can work

with both continuous and discrete distance

functions, and it is suitable for secondary

memory storage.

Vantage Point Tree [43] (VP Tree) Like

the KD-Tree, each VP-Tree node

cuts/divides the space. A VP-Tree node

employs distance from a selected vantage

point rather than using coordinate values.

Near points make up the left/inside

subspace while the right/outside subspace

consists of far points. A binary tree is

formed by recursion. Each of the tree

nodes identifies a vantage point, and for its

children (left/right), the node contains

bounds associated to subspace by the

vantage point. Other forms of the VP-Tree

include additional subspace bounds and

may employ buckets near leaf level.

VPS-Tree [43] an element of S is compared

with the vantage point belonging to each of

its ancestors in the tree. This information

is also not captured in the simple tree. It

consists of a database element identifier

„id‟, and a list „hist‟ of distances from the

item to each vantage point tracing back to

the root. A list of these structures is

11 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

initialized with the history set to null from

the entire database. The algorithm then

recursively splits the list into two lists L

and R, while adding to the history of each

item. Each resulting tree node contains a

list „bnds‟ which have a range interval for

its corresponding subspace which is seen

by each ancestral vantage point.

VPSB-Tree [43] Here we consider one way

to form buckets of leaves in order to save

space while preserving the notion of

ancestral history present in the VPS-Tree.

Buckets are formed by descending sub-

trees near leaf level into a flat structure.

Each bucket contains say no element

records. Each record must specify an id,

and in addition holds distance entries for

every ancestor. We call the resulting

structure a VPSB-Tree.

Multi-Vantage Point Tree [44] (MVP

Tree) A distance based index structure

called multi-vantage point (MVP) tree for

similarity queries on high-dimensional

metric spaces. The MVP Tree uses more

than one vantage point to partition the

space into spherical cuts at each level. It

also utilizes the pre-computed (at

construction time) distances between the

data points and the vantage points.

Excluded Middle Vantage Point Forest

[45] is a variant of VP-trees. It is intended

for radius-limited nearest neighbor search,

that is, where the nearest neighbor is

restricted to be within some radius r* of

the query object. This technique is based

on the insight that most of the complexity

in performing search in methods is based

on binary partitioning, such as the VP-tree,

is due to query objects that lie close to the

partition values, thus causing both

partitions to be processed.

Regular Decomposition (Space Driven

Indexes)

Applying the regular decomposition

methods, the data space is partitioned in a

regular or semi-regular way. The

subdivision of space should be specified

and then object will be addressed in the

new structure. The geometry of the object

is distributed between several adjacent

cells (or regions). The objects details are

generally kept intact, whereas the spatial

index cells store locations of the database

positions of the entire objects that intersect

them. The data related with each cell are

stored in one or more records and the

address of which is given in terms of the

coordinates of the lower corner of the cell.

For the regular decomposition of space,

cells commonly have three different

shapes:

 Triangle: convenient for representing

approximately spherical surfaces.

Triangles have the advantage that they

can be regularly partitioned any

number of times.

 Rectangle: most appropriate because

its edges can be aligned with the axis of

a coordinate system. Rectangles

simplify inclusion analysis within

rectangular search window.

 Hexagon: suitable for mapping

statistical properties since their

neighboring centers are equidistant in

all six directions.

Space Filling Curves [3] order the points

in a discrete two-dimensional space. This

method is also called tile indexing. It

converts a two-dimensional problem into a

one-dimensional one, so it can be used in

combination with a familiar data structure

for one-dimensional storage and retrieval.

 The row ordering simply numbers the

cells row by row, and within each row

the points are numbered from left to

right

 The row prime (or snake-like, or

12 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

boustrophedon) ordering is a variant in

which alternate rows are traversed in

opposite directions

 Column and column prime orderings

in which the roles of row and column

are transposed.

 Bitwise interleaving of the two

coordinates results in a one-

dimensional key, called the Morton

key. The Morton key is also known as

Peano key, or N- order, or Z-order.

 Hilbert ordering is constructed using

the classic Hilbert-Peano curve.

 Gray ordering is achieved by bitwise

interleaving the Gray-codes of the x

and y coordinates. As Gray codes have

the property that successive codes vary

by exactly one bit position, a 4-

neighbour cell only differs in one bit

 The Cantor-diagonal ordering is that

the numbering of the points is adapted

to the fact that we are dealing with a

space that is bounded in all directions

 The Spiral ordering

 The Sierpinski curve, which is based

on a recursive triangle subdivision.

Fig 4: Space Filling Curves

13 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

DOT [46] (DOuble Transformation)

approach has two transformations: first, a

covering rectangle of an object in a k-

dimensional space is mapped into a point

in a nk-dimensional space; second, the nk-

dimensional point is then mapped onto a

point in a one-dimensional space using the

distance preserving mapping concept. The

second transformation can be any

mapping, such as Hilbert or Peano

mapping.

UB Tree [47] is based on the grouping of

one dimensional index structures and

space-filling curves. i.e., combines the B-

Tree and the Z-curve. Together with its

sophisticated query processing algorithms

it has proven its performance advantages

in numerous application domains. As the

UB-Tree is based on the standard B-Tree,

which is the basic index structure in almost

every commercial DBMS, the task of

integrating this MAM into an existing

kernel becomes less complex and less

costly.

Z-ordering [48] [55] is based on the Peano

curve. A simple algorithm to obtain the z-

ordering representation of a given

extended object can be described as

follows. Starting from the (fixed) universe

containing the data object, space is split

recursively into two subspaces of equal

size by (d-1)-dimensional hyperplanes.

Quad-tree Based Structures

Quadtrees [49] are one of the first data

structures for higher-dimensional data. A

quadtree is a rooted tree in which every

internal node has four children. Every

node in the quadtree corresponds to a

square. If a node v has children, then their

corresponding squares are the four

quadrants of the square of v ¾ hence the

name of the tree. This infers that the

squares of the leaves together form a

portion of the square of the root. We call

this subdivision as the quadtree

subdivision. The children of the root are

labeled NE, NW, SW, and SE to indicate

to which quadrant they belong to; NE

stands for the north-east quadrant, NW for

the north-west quadrant, and so on.

Point Quadtree [49] [54] resembles the

KD-tree. The modification is that the space

is divided into four rectangles instead of

two. The input points are stored in the

internal nodes of the tree.

Region Quadtree [50] is used to store a

rasterized estimate of a polygon. First, the

area of interest is bounded by a square. A

square is repetitively divided into four

squares of equal size until it is entirely

inside or outside the polygon or until the

maximum depth of the tree is reached.

PM Quadtree [51] A polygonal map, a

collection of polygons, can be represented

by the PM Quadtree. The vertices are stored

in the tree similar as in the PR Quadtree.

The edges are divided into q-edges which

entirely fall within the squares of the

leaves. There are seven classes of q-edges.

The first class of q-edges is those that

interconnect one boundary of the square

and meet at a vertex within that square.

The other six classes intersect two

boundaries and are named after the borders

they intersect: NW, NS, NE, EW, SW and

SE. For each non-empty class, the q-edges

are stored in a balanced binary tree.

PMR Quadtree [52] (for PM Random) is

based on the observation that any rule that

divides up the line segments among

quadtree blocks in a reasonably uniform

fashion can be used as the basis for a PM-

like quadtree. The PMR quadtree uses a

couple of rules, one for splitting and one

for merging, to dynamically organize the

data.

Quad-CIF-Tree [53] (CIF - Caltech

Intermediate Form) was proposed for

representing a set of small rectangles for

VLSI applications. It is organized in a way

14 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

similar to the region quad-tree. A region is

recursively partitioned until the resulting

quadrants do not contain any rectangle.

During the subdivision, all rectangles that

intersect with either of the two dividing

lines are associated with the dividing lines.

The rectangles that are associated with a

quadrant must not belong to any ancestor

quadrant. It is assumed that no two

rectangles overlap.

MX Quadtree [54] is probably the

simplest way of representing line data, and

is a region quadtree in which lines are

represented by regions which are one pixel

wide. It can be viewed as a quadtree

representation of a chain code.

Linear QuadTree [55] The key remark is

that once the entries [mbb, oid] has been

assigned (as for a regular quadtree) to a

quadtree leaf with label l , and stored in a

page with address p, then we index in a B+

tree the collection of pairs (l , p) keyed on

the leaf label l.Such a organization

provides an ice packing of quadtree labels

into B+ tree leaves. The packing is

dynamic; that is, it persists when inserting

and deleting objects in the collection.

Hashing based Structures

Linear Hashing[56][57] Linear hashing

divides the universe [A, B) of possible hash

values into binary intervals of size (B-

A)/2kor (B-A)/2k+1 for some k ≥ 0.Each

interval corresponds to a bucket, that is, a

collection of records stored on a disk page.

T € [A, B) is a pointer that separates the

smaller intervals from the larger ones: all

intervals of size (B-A)/2kare to the left of t

and all intervals of size (B-A)/2k+1 are to

the right of t.

Multidimensional Linear Hashing.

Unlike multidimensional extendible

hashing, multidimensional linear hashing

uses no or only a very small directory. It

therefore occupies relatively little storage

compared to extendible hashing, and it is

usually possible to keep all relevant

information in main memory.

MOLHPE [58] A variation of linear

hashing called Multidimensional Order-

Preserving Linear Hashing with Partial

Expansions (MOLHPE). This organization

is based on the idea of partially extending

the buckets without increasing the file size

at the same time. MOLHPE outperforms

for uniformly distributed data. It fails for

non-uniform distributions, mostly because

the hashing function does not adapt

elegantly to the given distribution.

Z-Hashing [59] uses a space-filling curve

technique called z-ordering to guarantee

that points located close to each other are

also stored close together on the disk.

Extendible Hashing [60] As does linear

hashing, extendible hashing organizes the

data in binary intervals, here called cells.

Overflow pages are avoided in extendible

hashing by using a central directory. Each

cell has an index entry in that directory; it

firstly corresponds to one bucket. If during

an insertion a bucket at maximal depth

exceeds its maximum capacity, all cells are

split into two. New index entries are

created and the directory doubles in size.

Since each bucket was not at full capacity

before the split, it may now be possible to

fit more than one cell in the same bucket. In

that case, adjacent cells are regrouped in

data regions and stored on the same disk

page.

Cell Methods based on Dynamic

Hashing

Grid Files [61] [55] A file data structure

aimed to manage a disk allocation storage

in terms of fixed size units like disk

blocks, pages or buckets depending on

level of description. It is a variant of grid

method where the requirement is cell

15 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

division lines must be equidistant. Hashing

method for multidimensional points. It is

an extension of extensible hashing.

Multi-layer Grid File [62] To enhance the

search performance of the grid file, a

multi-layer grid file which neglects object

mapping was proposed. In such a

structure, a map space may consist of

several grid files that cover the same

space. When a grid file is divided, all

objects that are not cut by the dividing

hyperplane are scattered among the two

new subspaces and objects that are cut are

stored in the next layer grid file. There

may be several layers of grid files that

store un-partitioned objects, and each layer

has different dividing hyperplanes. At the

maximal layer, the objects are clipped if

they overlap the dividing hyperplane.

Two-Level Grid File [63] The basic idea

of it is to use a second grid file to manage

the grid directory. The first level is called

the root directory. Entries of the root

directory contains pointers to the directory

pages of the lower level, which in turn

contain pointers to the data pages. By

having a second level, splits are often

limited to the subdirectory regions without

affecting too much of their surroundings.

Twin Grid File [64] It is other hashing

method. It tries to increase space

utilization compared to the original grid

file by introducing a second grid file. The

relationship between these two grid files is

not hierarchical but somewhat more

balanced. Both grid files span the whole

space (universe). The distribution of the

data among the two files is performed

dynamically.

R File [65] The R-file is based on the

concept of multi-layer grid files. The R-

file is different from the multi-layer grid

file in that the R-file has only one layer

and is intended for non-zero sized objects.

In the R-file, cells are divided using the

dividing strategy of the grid file and a cell

is split when overflowed. In order for cells

to robustly contain the spatial objects, cells

are divided recursively by repeated halving

till the smallest cell that encloses the

spatial objects is obtained. Spatial objects

that are completely contained in a cell are

stored in its related data page, and those

that intersect the dividing line are stored in

the original cell. If the number of spatial

objects that intersect a division is more

than what can be stored in a data page,

partitioning line along the other

dimensions will be used. If all records lie

on the cross point of partitioning lines,

they cannot be partitioned by any

partitioning lines, and in such a case a

chain of buckets is used.

Filter Tree [66] is a hierarchical

organization that tends to separate spatial

entities by size, placing larger entities at

the higher levels of the Filter Tree, and

smaller entities at lower levels. Within

each level, index entries for the entities are

ordered by a space-filling curve (Hilbert

curve). This allows the algorithms to use

bulk I/O requests, exploiting the locality in

the index information, and minimizing the

number of I/O transfers from disk. Filter

Trees engage a recursive binary partition

of the data space in each dimension.

Entities related with a particular level are

all grouped together. Each entity is placed

at the lowest-level of the tree at which it is

entirely enclosed by a single cell of the

division at that level. This method of

determining the level at which an entity is

stored tend to cause larger entities to be

stored high in the tree (because they can be

enclosed only in large cells), whereas

smaller entities tend to sink to lower levels

of the tree since they fit into smaller cells.

Sometimes small entities will be caught at

higher levels in the tree because they

happen to lie across the boundary between

two large cells. However, under reasonable

statistical assumptions about where entities

are placed, the fraction of such entities is

16 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

small.

EXCELL method [67] (Extendible CELL)

related to the grid file. It is a bintree with a

directory in the form of an array providing

access by address computation. It can also

be viewed as an adaptation of extendible

hashing to multidimensional point data. In

contrast to the grid file, where the dividing

hyperplanes may be spaced arbitrarily, the

EXCELL method decomposes the space

regularly ad all grid cells are of equal size.

Segment Index [68] approach combines

features of the memory resident Segment

Tree data structure with those of a class of

database access methods that are based on

paged, multi-way, tree-structured indexes.

The Segment Tree data structure stores line

segments in a binary tree by storing the

segment endpoints in the leaf nodes, and

then associates each interval with the

highest level no& N that spans the values

corresponding to the left and right children

of N.

Slim-tree [69] a dynamic tree for

organizing metric datasets in pages of

fixed size. The Slim-tree uses the "fat-

factor" which provides a simple way to

quantify the degree of overlap between the

nodes in a metric tree. It is well-known that

the degree of overlap directly affects the

query performance of index structures.

There are many suggestions to reduce

overlap in multi- dimensional index

structures, but the Slim- tree is the first

metric structure explicitly designed to

reduce the degree of overlap.

Bisector Tree [38][70] (BST) it is often

common to augment the gh-tree by

including for each pivot the maximum

distance to an object in its sub-tree

yielding what are, in effect, covering balls.

The resulting data structure is called a

bisector tree (BST). The motivation for

adding the covering balls is to speed up the

search by enabling the pruning of elements

whose covering balls are farther from the

query object than the current candidate

nearest neighbor (the farthest of the k

candidate nearest neighbors) or are outside

the range for a range query.

GNAT [71] (Geometric Near-neighbor

Access Tree) is a generalization of the

GH- Tree, where more than two pivots

may be chosen to partition the data set at

each node. In particular, given a set of

pivots P= {p1, …, pm}, we split S into S1,

: : : , Sm based on which of the objects in P

is the closest. It is also based on Voronoi

cell- like partitioning.

SA-Tree [72] (Spatial Approximation

Tree.) was inspired by the Voronoi

diagram, a widely used method for nearest

neighbor search in point data. thesa-tree

attempts to approximate the structure of

the Delaunay graph.

M-tree [38] [73] [74] is based on a

hierarchical organization of data objects Oi

€ S according to a given metric d. It is a

distance-based indexing method designed

to address this deficiency. Like other

dynamic and paged trees, the M-tree

structure consists of a balanced hierarchy

of nodes. The nodes have a fixed capacity

and a utilization threshold. Within M-tree

hierarchy the objects are clustered into

metric regions. The leaf nodes contain

ground entries of the indexed data objects

while routing entries (stored in the inner

nodes) describe the metric regions. Its

design goal was to combine a dynamic,

balanced index structure similar to the R-

tree (which, in turn, was inspired by the B-

tree) with the capabilities of static

distance-based indexes.

D-Index [75] is an access organization for

similarity search. It is a multi-level metric

structure, consist of search-separable

buckets at each level. The structure

supports simple insertion and restricted

search costs for the reason that at most one

17 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

bucket desires to be accessed at each level

for range queries up to a predefined value

of search radius ρ. At the same time, the

applied pivot-based approach considerably

reduces the number of distance

computation in accessed buckets.

eD-Index [76] An access structure for

similarity self-join. The idea behind the

eD- Index is to change the ρ-split function

so that the exclusion set and separable sets

overlap of distance. The objects which

belong to both the separable and the

exclusion sets are replicated. This

principle, called the exclusion set

overloading, ensures that there always

exists a bucket for every qualifying pair (x,

y)|d(x, y) ≤ μ ≤ €where the pair occurs.

List of clusters [77] The LC splits the space

into zones. Each zone has a center c and

stores both its radius rp and the bucket I of

internal objects, that is, the objects inside

the zone. The LC splits the space into

zones (or “clusters”). Each zone has a

center c and a radius rc and it stores the

internal objects I = {x € S, d(x, c) ≤ rc},

which are at distance at most rc from c.

Recursive List of Clusters (RLC) [78] [79]

which can be seen as a dynamic version of

the LC. The RLC is composed by clusters of

fixed radius, so the number of objects of

each cluster can differ.

List of Twin Clusters (LTC) [80] a new

metric index specially focused on the

similarity join problem. The data structure

considers two lists of overlapping clusters,

which we can call twin clusters. Each

cluster is a triple (center, effective radius,

internal bucket). Considering the LC idea,

every object being a center is not included

in its twin bucket. So, when solving range

queries, most of the relevant objects would

belong to the twin cluster of the object that

we are querying for.

Ball-and-Plane tree (BP-tree) [81] which

is constructed by separating the dataset

into compact clusters. It combines the

advantages of both disjoint and non-

disjoint paradigms in order to attain a

structure of tight and low overlapping

clusters, yielding considerably better

performance. BP-tree does not split the

data set into disjoint or non-disjoint

groups. Instead, it is an index structure that

combines the advantages of both those

strategies. BP-tree is an unbalanced tree

index generated by the hierarchical

partitioning of the dataset. Like other

metric trees, the objects of the data set are

stored into fixed size disk pages. Each

page holds a predefined maximum number

of objects K.

Hybrid methods

Buddy-Tree [82] The buddy-tree can be

measured as a compromise of the R-tree

and the grid-file. It ignores the down

splitting of the K-D-B-tree, the overlap

problem of the R-tree and the dependency

of structure upon the inclusion of data. The

buddy-tree generalize the buddy system of

the grid-file to arrange correlated data

proficiently, by bounding the data points

firmly using the bounding rectangle

concept of the R-tree and arrange the

directory as in the R-tree. Like grid-files,

the non-zero sized data have to be mapped

into high dimensions.

BANG File [83] (Balanced And Nested

Grid) file is an interpolation-based grid file

which is however different from the

original grid file in that it allows two

subspaces to intersect. The BANG file

divides the data space into a hierarchy of

sets of notational grid regions. Each of

these grid regions can be identified by a

unique pair (r, l), where r is the region

number, and l is the granularity or level

number. A space is obtained by recursively

halving along some selected dimensions.

That is, the level of the hierarchy of grid

18 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

regions is generated from the previous

higher level by dividing along a selected

dimension.

BV-Tree [84] The BV-tree represents an

effort to solve the d-dimensional B-tree

problem, i.e.,, to find a generic

generalization of the B-tree to higher

dimensions. The BV-tree is not intended to

be a concrete access method, but rather a

conceptual framework that can be useful to

a variety of existing access methods,

including the BANG file or the hB-tree.

G-tree [85] (grid tree) is based on the BD-

tree. The structure differs from the BD-

tree in the way the partitions are mapped

into buckets. To obtain a simple mapping,

the G-tree sacrifices the minimum storage

utilization that holds for the BD-tree.

Generalized Grid File [86] (GGF) It is a

multi-level grid file. The GGF acts like a

B+ tree for a single dimensional data. With

such a hierarchical formation, the property

of "two disk accesses" for exact-match

queries is no longer applicable.

Pivoting M-tree (PM-tree) [87], exploiting

pivot-based ideas for metric region volume

reduction.

Metric Index (M-Index) [88] defines a

worldwide mapping schema from a

generic metric space to a real numeric

domain. Significantly, this schema has the

capability to conserve the proximity of

data, i.e. it map similar metric objects to

close numbers in the numeric domain. The

M-Index indexing and searching

mechanisms make use of a set of reference

objects and synergically exploit basically

all known metric based principles of data

separation, pruning and filtering.

PLOP Hashing [89] (Piecewise linear

order-preserving) hashing this structure

can also be used as an access method for

extended objects. A grid file extension was

proposed for the storing of non-zero sized

objects. The method is a multi-

dimensional dynamic hashing scheme

based on Piecewise Linear Order

Preserving (PLOP) hashing. Like the grid

file, the data space is partitioned by an

orthogonal grid. However, instead of using

k arrays to store scales that define dividing

hyperplanes, k binary trees are to represent

the linear scales. Each internal node of a

binary tree stores a (k-1) dimensional

partitioned hyperplane. Each leaf node of a

binary tree is related with a k-dimensional

subspace (a slice), where the interval along

its related axis is a sub-interval and the

other k-1 intervals assume the intervals of

the global space. Each slice is addressed

by an index i stored in its leaf node.

Space-filling curve and Pivot-based B+-

tree (SPB-tree) [90] It stores complex

objects in a separate random access file

(RAF), and uses a B+-tree with minimum

bounding boxes (MBB) to index objects

after a two-stage pivot-and-SFC mapping.

The SPB-tree is generic: it does not rely on

the detailed representations of objects, and

it can support any distance notion that

satisfies the triangle inequality.

Other kinds of indexing

Bitmap Indices [91] [92] [93] [94] [95]

Bitmap indices are a specialized type of

index designed for easy querying on

multiple keys, although each bitmap index

is built on a single key. A bitmap index for

a field F is a collection of bit-vectors of

length n, one for each possible value that

may appear in the field F. The vector for

value v has 1 in position i if the i
th

 record

has v in field F, and it has 0 there if not.

For bitmap indices to be used, records in a

relation must be numbered sequentially,

starting from, say, 0. Given a number n, it

must be easy to retrieve the record

numbered n. This is particularly easy to

achieve if records are fixed in size, and

allocated on consecutive blocks of a file.

19 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

The record number can then be translated

easily into a block number and a number

that identifies the record within the block.

Join Index [96] [97] [98] a simple data

structure for improving the performance of

joins in the context of complex queries. A

Join Index is a data structure used for

processing join queries in databases. Join

indices uses pre-computation techniques to

speed up online query processing and are

useful for datasets which are updated

rarely. For most of the joins, updates to

join indices incur very little overhead.

Some properties of a join index are

 Efficient usage of memory and

adaptiveness to parallel execution

 Compatibility with other operations

(including select and union)

 Support for abstract data type join

predicates

 Support for multi-relation clustering

and

 Its use in representing directed graphs

and in evaluating recursive queries.

STARjoin & STARindex [99] STARjoin

is a high-speed, single pass, parallelizable

multi-table join. It outperforms many join

methods implemented by traditional OLTP

RDBMSs as it can join more than two

tables in a single operation. Red bricks

RDBMS supports the formation of

specialized indexes called STARindexes,

to significantly accelerate join

performance. The STARindexes differs

from traditional index structures like B-

tree or bitmapped indexes. STARindexes

are formed on one or more foreign key

columns of a fact table.

OBSERVATIONS

Some of the observations are as follows:

 R
+
-tree > R-tree > k-d-B-tree When

less overlap between data rectangles

 R
*
-tree > Variants of the R-tree. R

*
-

tree has best storage utilization and

insertion times. For all data list and

queries, only number of disk accesses

is measured.

 Hilbert R-tree slightly better than R
*
-

tree

 Hilbert codes can therefore be used for

bulk insertion into dynamic R
*
- tree.

 Hilbert R-tree has better search result,

while updates take about the same as

for the R
*
- tree.

 skd-tree > R-tree skd-tree requires

more space than R-tree.

 For large page size, the performance is

in term of number of page accesses per

search operation.

 PMR-quadtree = R
*
-tree = R

+
-tree

 R
+
- tree shows the best insertion

Performance.

 R
*
- tree occupies the least space and is

more compact in term of the data.

 When use line segments as test data for

indexing.

 R-file > R-tree

 R-file has a 10-20% performance

advantage over the R-tree on a data set

with a high degree of overlap.

 K-d trees out performs quad tress

without requiring additional memory

usage.

 (Buddy tree, BANG file) > R-tree

 For all data distributions in terms of

measuring the number of page

accesses.

 SPB Tree achieves low-cost index

storage, construction, and

manipulation, supports efficient query

processing in metric spaces and

manage efficiently a large set of

complex objects.

CONCLUSION

In this paper we presented a short

overview of the current state in the field of

development of the access methods.

During the last four decades the access

methods have been developed towards

plenty of modifications of small number

20 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

basic ideas. It is important to remark that

the research has been provided on software

as well as on hardware levels.

The survey of the access methods suggests

that the context-free multi-dimensional

access methods practically are not

available. SPB tree outperforms in terms

of low cost indexing and efficient query

processing. K-d trees out performs quad

tress without requiring additional memory

usage.

REFERENCES

1. Indexing in Spatial

 Databases BC Ooi, R

 Sacks-Davis, J Han-

Unpublished/Technical Papers,

1993.

2. Multidimensional Access Methods ,

VOLKER GAEDEIC-Parc,

Imperial College, London and

OLIVER GU¨ NTHER Humboldt-

Universita¨ t, Berlin, ACM

Computing Surveys, Vol. 30, No. 2,

June 1998.

3. Spatial access methods P VAN

OOSTEROM Geographical

information systems, 1999.

4. A white paper on Spatial

Partitioning and Indexing, Claudia

Dolci, Dante Salvini, Michael

Schrattner, Robert Weibel,

GITTA(Geographic Information

Technology Training Alliance).

5. Bentley, J. L., “Multidimensional

Binary Search Trees Used For

Associative Searching,

”Communications of the ACM,

18(9), 509-517, 1975.

6. J. L. Bentley, J. H. Friedman. Data

structures for range searching.

ACM Comput. Surv. 11, 1979, 4,

397–409.

7. J.T. Robinson. The K-D-B-tree: A

search structure for large

multidimensional dynamic indexes.

In Proceedings of the ACM

SIGMOD International Conference

on Management of Data, 1981, pp.

10-18.

8. D.B. Lomet, B. Salzberg. The

hBtree: A robust multi attribute

search structure. In Proceedings of

the Fifth IEEE International

Conference on Data Engineering,

1989,pp. 296–304.

9. G. Evangelidis, D. Lomet, B.

Salzberg. The hBP- tree: A modified

hB-tree supporting concurrency,

recovery and node consolidation. In

Proceedings of the 21st

InternationalConference on Very

Large Data Bases, 1995, pp. 551–

561.

10. J. B. Rosenberg: Geographical data

structures compared: A study of

data structures supporting region

queries, IEEE Trans. on Comp.

Aided Design CAD-4, 1, 53-67

(1985).

11. Y. Ohsawa, M. Sakauchi: A new

tree type data structure with

homogeneous nodes suitable for a

very large spatial database. Proc.

IEEE 6th Int. Conf. on Data

Engineering, 296-303 (1990).

12. A. Henrich, H.-W. Six, P.

Widmayer. The LSD tree: Spatial

access to multidimensional point

and non-point objects. In

Proceedings of the Fifteenth

International Conference on Very

Large Data Bases, 1989, pp. 45–53.

13. H. Fuchs, Z. Kedem, B. Naylor. On

visible surface generation by a

priori tree structures. Computer

Graph. 14, 3, 1980.

14. B.C. Ooi, K.J. McDonell, R. Sacks-

Davis. Spatial kd-tree: An indexing

mechanism for spatial databases. In

Proceedings of the IEEE Computer

Software and Applications

Conference, 1987, pp. 433–438.

15. O. Procopiuc, P. K. Agarwal, L.

Arge, J.-S. Vitter. Bkd-tree: A

Dynamic Scalable kd-tree. In

21 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Proceedings of International

Symposium on Spatial and

Temporal Databases, 2003.

16. A. Guttman: R-trees: A dynamic

index structure for spatial searching.

Proc. ACM SIGMOD Int. Conf. on

Management of Data, Boston, MA,

47-57 (1984).

17. D. Greene: An implementation and

performance analysis of spatial data

access methods. Proc. 5th Int. Conf.

on Data Engineering, 606 – 615

(1989).

18. Sellis et al, 1987] T. Sellis, N.

Roussopoulos, C. Faloutsos. The

R+-tree: A dynamic index for multi-

dimensional objects. In Proceedings

of the Thirteenth International

Conference on Very Large Data

Bases, 1987, pp. 507–518.

19. N. Beckmann, H.-P. Kriegel, R.

Schneider, B. Seeger. The R*-tree:

An efficient and robust access

method for points and rectangles. In

Proceedings of ACM SIGMOD

International Conference on

Management of Data, 1990, pp.

322–331.

20. K. I. Lin, H. V. Jagadish, C.

Faloutsos. The tv-tree: an index

structure for high dimensional data.

The VLDB Journal, 3(4):517–542,

1994.

21. N. Roussopoulos, D. Leifker. Direct

spatial search on pictorial databases

using packed R-trees. In

Proceedings of the ACM SIGMOD

International Conference on

Management of Data, 1985, pp. 17–

31.

22. O. Günther, H. Noltemeier. Spatial

database indices for large extended

objects. In Proceedings of the

Seventh IEEE International

Conference on Data Engineering,

1991, 520–526.

23. H.V. Jagadish. Spatial search with

polyhedra. In Proceedings of the

Sixth IEEE International

Conference on Data Engineering,

1990, pp. 311–319.

24. Joseph M. Hellerstein, AviPfeffer,

“The RD-tree: An Index Structure

for sets”. University of Wisconsin,

Computer Science Technical report

1252, November 1994.

25. D. A. White, R. Jain. Similarity

indexing with the ss-tree. In ICDE

‟96: Proceedings of the Twelfth

International Conference on Data

Engineering, pages 516–523,

Washington, DC, USA, 1996. IEEE

Computer Society.

26. N. Katayama, S. Satoh. The SR-

tree: an index structure for high

dimensional nearest neighbor

queries. In SIGMOD ‟97:

Proceedings of the 1997 ACM

SIGMOD international conference

on Management of data, pages 369–

380, New York, NY, USA, 1997.

ACM Press.

27. I. Kamel, C. Faloutsos. Hilbert R-

tree: An improved R-tree using

fractals. In Proceedings of the

Twentieth International Conference

on Very Large Data Bases, 1994,

pp. 500–509.

28. I. Kamel, C. Faloutsos. Parallel R-

trees. In Proceedings of the ACM

SIGMOD International Conference

on Management of Data, 1992, pp.

195–204.

29. M. A. Nascimento, J.R.O. Silva, Y.

Theodoridis. Evaluation of Access

Structures for Discretely Moving

Points. In Proc. of the Intl.

Workshop on Spatio-Temporal

Database Management, STDBM,

pages 171–188, Sept. 1999.

30. W. Osborn, K. Barker. Searching

through Spatial Relationships using

the 2DR-tree. The IASTED

Conference on Internet and

Multimedia Systems and

Applications Honolulu, Hawaii,

USA August 14-16, 2006.

31. Y. Theodoridis, M. Vazirgiannis, T.

22 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Sellis. Spatio- Temporal Indexing

for Large Multimedia Applications.

In Proc. of the IEEE Conference on

Multimedia Computing and

Systems, ICMCS, June 1996.

32. DBM-Tree: Trading Height-

Balancing for Performance in

Metric Access Methods Marcos R.

Vieira, Caetano Traina Jr., Fabio J.

T. Chino, Agma J.M. Traina.

33. Traina, C., Traina, A.J.M., Filho,

R.F.S., Faloutsos, C.: How to

improve the pruning ability of

dynamic metric access methods. In:

CIKM, pp. 219–226 (2002).

34. E. Vidal, “An algorithm for finding

nearest neighbors in

(approximately) constant average

time,” Pattern Recog. Lett., vol. 4,

no. 3, pp. 145–157, 1986.

35. L. Mico, J.Oncina, E. Vidal An

algorithm for finding nearest

neighbours in constant average time

with a linear space complexity

Proceedings, 11th IAPR

International Conference on Pattern

Recognition. Vol. II. Conference B:

36. Pattern Recognition Methodoly and

Systems Year; 1992.

37. L. Mico, J. Oncina, and R. C.

Carrasco, “A fast branch & bound

nearest neighbour classifier in

metric spaces,” Pattern Recog. Lett.,

vol. 17, no. 7, pp. 731–739, 1996.

38. A modification of the LAESA

algorithm for approximated k-NN

classification, Pattern Recognition

Letters, Vol. 24, Issue: 1-3, January

2003, Pages: 47-53.

39. G. R. Hjaltason and H. Samet,

“Index-driven similarity search in

metric spaces,” ACM Trans.

Database Syst., vol. 28, no. 4, pp.

517–580, 2003.

40. R. Baeza-Yates, W. Cunto, U.

Manber, and S. Wu. Proximity

matching using fixed-queries trees.

In Proc. CPM‟94, LNCS 807, pages

198–212, 1994.

41. Ricardo Baeza-Yates Gonzalo

Navarro “Fast approximate string

matching in a dictionary” Published

in: String Processing and

Information Retrieval: A South

American Symposium, 1998.

Proceedings IEEE.

42. E. Ch´avez, J.L. Marroquin, and G.

Navarro. Fixed queries array: A fast

and economical data structure for

proximity searching. Multimedia

Tools and Applications (MTAP),

14(2):113–135, 2001.

43. Spatial Selection of Sparse Pivots

for Similarity Search in Metric

Spaces,

44. JCS&T Vol. 7 No. 1, April 2007.

45. P. N. Yianilos, “Data structures and

algorithms for nearest neighbor

search in general metric spaces,” in

Proc. Annu. ACM-SIAM Symp.

Discrete Algorithms, 1993, pp. 311–

321.

46. T. Bozkaya and M. Ozsoyoglu.

Distance-based indexing for high-

dimensional metric spaces. In Proc.

SIGMOD‟97, pages 357–368, 1997.

Sigmod Record 26(2).

47. YIANILOS, P. N. 1998. Excluded

middle vantage point forests for

nearest neighbor search. Tech. rep.,

NEC Research Institute, Princeton,

NJ. July. (Presented at the

FirstWorkshop on Algorithm

Engineering and Experimentation

(ALENEX‟99), Baltimore, MD, Jan.

48. C. Faloutsos, Y. Rong. DOT: A

spatial access method using fractals.

In Proceedings of the Seventh IEEE

International Conference on Data

Engineering, 1991, pp. 152– 159.

49. R. Bayer. The universal B-tree for

multidimensional indexing. Tech.

Rep. I9639, Technische Universitat

Munchen, Munich, Germany. 1996.

50. J. Orenstein, T.H. Merrett. A class

of data structures for associative

searching. In Proceedings of the

Third ACM SIGACT–SIGMOD

23 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

Symposium on Principles of

Database Systems, 1984, pp. 181–

190.

51. Samet, H. (1984). `The Quadtree

and Related Hierarchical Data

Structures', Computing Surveys, 16

(2), 187-260.

52. R. Finkel, J. L. Bentley. Quadtrees:

A data structure for retrieval of

composite keys. Acta Inf. 4, 1,

1974, pp. 1–9.

53. H. Samet, R. E. Webber. Storing a

collection of polygons using

quadtrees. ACM Trans. Graph. 4, 3,

1985, 182–222.

54. R.C. Nelson, H. Samet. A

Consistent Hierarchical

Representation for Vector Data. In

Proc. of the ACM SIGGRAPH,

pages 197–206, Aug. 1986.

55. KEDEM, G. 1982. The quad-CIF

tree: A data structure for

hierarchical on- line algorithms. In

Proceedings of the Nineteenth

Conference on Design and

Automation, 352–357.

56. Principles of Multimedia Database

Systems by VS Subrahmanian,

Morgan Kaufmann Publishers,

1998.

57. Spatial Databases with Application

to GIS by Philippe Rigaux, Michel

Scholl, Agnes Voisard, Morgan

Kaufmann Publishers (2002), pages

207-259.

58. W. Litwin. Linear hashing: A new

tool for file and table addressing. In

Proceedings of the Sixth

International Conference on Very

Large Data Bases, 1980, pp. 212–

223.

59. P. A. Larson. Linear hashing with

partial expansions. In Proceedings

of the Sixth International

Conference on Very Large Data

Bases, 1980, pp. 224–232.

60. H.-P. Kriegel, B. Seeger.

Multidimensional order preserving

linear hashing with partial

expansions. In Proceedings of the

International Conference on

Database Theory, LNCS 243,

Springer-Verlag,

Berlin/Heidelberg/New York. 1986.

61. A. Hutflesz, H.-W. Six, P.

Widmayer. Globally order

preserving multidimensional linear

hashing. In Proceedings of the

Fourth IEEE International

Conference on Data Engineering,

1988, pp. 572–579.

62. R. Fagin, J. Nievergelt, N.

Pippenger, R. Strong. Extendible

hashing: A fast access method for

dynamic files. ACM Trans.

Database Syst. 4, 3, 1979, pp. 315–

344.

63. J. Nievergelt, H. Hinterberger, K.

Sevcik. The grid file: An adaptable,

symmetric multikey file structure.

In Proceedings of the Third ECI

Conference, A. Duijvestijn and P.

Lockemann, Eds., LNCS 123,

Springer-Verlag,

Berlin/Heidelberg/New York, 1981,

pp. 236–251.

64. H. Six, P. Widmayer. Spatial

searching in geometric databases. In

Proceedings of the Fourth IEEE

International Conference on Data

Engineering, 1988, pp. 496–503.

65. K. Hinrichs. Implementation of the

grid file: Design concepts and

experience. BIT 25, 1985, pp. 569–

592.

66. A. Hutflesz, H.-W. Six, P.

Widmayer. Twin grid files: Space

optimizing access schemes. In

Proceedings of the ACM SIGMOD

International Conference on

Management of Data, 1988, pp.

183–190.

67. A. Hutflesz, H.-W. Six, P.

Widmayer. The R-file: An efficient

access structure for proximity

queries. In Proceedings of the Sixth

IEEE International Conference on

Data Engineering, 1990, pp. 372–

24 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

379.

68. K. Sevcik, N. Koudas. Filter trees

for managing spatial data over a

range of size granularities. In

Proceedings of the 22th

International Conference on Very

Large Data Bases (Bombay), 1996,

pp. 16– 27.

69. M. Tamminen. The extendible cell

method for closest point problems.

BIT 22, 1982, pp. 27–41.

70. C. Kolovson, M. Stonebraker.

Segment indexes: Dynamic indexing

techniques for multi-dimensional

interval data. In Proceedings of the

ACM SIGMOD International

Conference on Management of

Data, 1991, pp. 138–147.

71. C. Traina Jr., A. Traina, B. Seeger,

C. Faloutsos. Slim- trees: High

Performance Metric Trees

Minimizing Overlap Between

Nodes. International Conference on

Extending Database Technology

(EDBT) 2000, Konstanz, Germany,

March 27-31, 2000.

72. I. Kalantari, G. McDonald. A data

structure and an algorithm for the

nearest point problem. IEEE Trans.

Software Eng., 9(5):631–634, 1983.

73. S. Brin. Near neighbor search in

large metric spaces. In VLDB ‟95:

Proceedings of the 21th

International Conference on Very

Large Data Bases, pages 574–584,

San Francisco, CA, USA, 1995.

Morgan Kaufmann Publishers Inc.

74. HJALTASON, G. R. AND

SAMET, H. 2003a. Improved

search heuristics for the SA-tree.

Patt. Rec. Lett. 24, 15 (Nov.), 2785–

2795.

75. P. Ciaccia, M. Patella, P. Zezula. M-

tree: An efficient access method for

similarity search in metric spaces. In

VLDB ‟97: Proceedings of the 23rd

International Conference on Very

Large Data Bases, pages 426–435,

San Francisco, CA.

76. Indexing metric spaces with m-tree.

P Ciaccia, M Patella, F Rabitti, P

Zezula

- SEBD, 1997.

77. V. Dohnal, C. Gennaro, P. Savino,

P. Zezula: D-Index: Distance

Searching Index for Metric Data

Sets. To appear in ACM Multimedia

Tools and Applications, 21(1),

September 2003.

78. V. Dohnal, C. Gennaro, and P.

Zezula, “Similarity join in metric

spaces using eD-Index,” Database

Expert Syst. Appl., vol. 2736, pp.

484–493, 2003.

79. E. Chavez and G. Navarro, “A

compact space decomposition for

effective metric indexing,” Pattern

Recog. Lett., vol. 26, no. 9, pp.

1363–1376, 2005.

80. M. Mamede. Recursive lists of

clusters: A dynamic data structure

for range queries in metric spaces.

In Proc. 20th Intl. Symp. on

Computer and Information Sciences

(ISCIS‟05), LNCS 3733, pages

843–853, 2005.

81. G. Navarro and N. Reyes, “Dynamic

list of clusters in secondary

memory,” in Proc. 7th Int. Conf.

Similarity Search Appl., 2014, pp.

94–105.

82. R. Paredes and N. Reyes, “Solving

similarity joins and range queries in

metric spaces with the list of twin

clusters,” J. Discrete Algorithms,

vol. 7, no. 1, pp. 18–35, 2009.

83. J. Almeida, R. D. S. Torres, and N.

J. Leite, “BP-tree: An efficient

index for similarity search in high-

dimensional metric spaces,” in Proc.

ACM Int. Conf. Inf. Knowl.

Manage., 2010, pp. 1365–1368.

84. B. Seeger, H.-P. Kriegel. The

buddy-tree: An efficient and robust

access method for spatial data base

systems. In Proceedings of the

Sixteenth International Conference

on Very Large Data Bases, 1990, pp.

25 Page 1-25 © MAT Journals 2018. All Rights Reserved

Journal of Web Development and Web Designing

Volume 3 Issue 1

590– 601.

85. M. Freeston. The BANG file: A

new kind of grid file. In

Proceedings of the ACM SIGMOD

International Conference on

Management of Data, 1987, pp.

260–269.

86. M. Freeston. A general solution of

the n-dimensional B-tree problem.

In Proceedings of the ACM

SIGMOD International Conference

on Management of Data, 1995, pp.

80–91.

87. A. Kumar. G-tree: A new data

structure for organizing

multidimensional data. IEEE Trans.

Knowl. Data Eng. 6, 2, 1994, pp.

341- 347.

88. H. Blanken, A. Ijbema, P. Meek, B.

Van den Akker. The generalized

grid file: Description and

performance aspects. In Proceedings

of the Sixth IEEE International

Conference on Data Engineering,

1990, pp. 380– 388.

89. T. Skopal, J. Pokorny, and V.

Snasel, “PM-tree: Pivoting metric

tree for similarity search in

multimedia databases,” in Proc.

ADBIS, 2004, pp. 803– 815.

90. D. Novak, M. Batko, and P.

Zezula, “Metric Index: An efficient

and scalable solution for precise and

approximate similarity search,” Inf.

Syst., vol. 36, no. 4, pp. 721–733,

2011.

91. H.-P. Kriegel, B. Seeger. PLOP-

hashing: A grid file without

directory. In Proceedings of the

Fourth IEEE International

Conference on Data Engineering,

1988, pp. 369–376.

92. L. Chen, Y. Gao, X. Li, C. S.

Jensen, and G. Chen, “Efficient

metric indexing for similarity

search,” in Proc. IEEE 31st Int.

Conf. Data Eng., 2015, pp. 591–

602.

93. Database System Concepts,

Silberschatz−Korth−Sudarshan:

Sixth Edition, McGraw-Hill

Publishers.

94. Database Systems The Complete

Book, Molina, Ullman Second

Edition 2008.

95. Fundamentals of Database Systems

book, Elmasri, Navathe, Sixth

Edition.

96. Bitmap index design and evaluation

CY Chan, YE Ioannidis - ACM

SIGMOD Record, 1998.

97. Multi-table joins through bitmapped

join indices P O'Neil, G Graefe -

ACM SIGMOD Record, 1995.

98. Join indices P Valduriez - ACM

Transactions on Database Systems

(TODS), 1987.

99. Efficient join-index-based spatial-

join processing: A clustering

approach Shashi Shekhar, Chang

Tien Lu, Sanjay Chawla, Sivakumar

Ravada.

100. D. Rotem. “Spatial Join Indices”. In

IEEE Transactions on Knowledge

and Data Engineering, Kobe, April

1991.

101. “Data Warehousing, Data Mining

and OLAP”, Alex Berson and

Stephen J.Smith, Tata McGraw –

Hill Edition 2008.

