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Abstract 

 

Spatial information processing has been a centre of attention of research in the previous 

decade. In spatial databases, data related with spatial coordinates and extents are retrieved 

based on spatial proximity. A large number of spatial indexes have been proposed to make 

ease of efficient indexing of spatial objects in large databases and spatial data retrieval. The 

goal of this paper is to review the advance techniques of the access methods. This paper tries 

to classify the existing multidimensional access methods, according to the types of indexing, 

and their performance over spatial queries. K-d trees out performs quad tress without 

requiring additional memory usage. 
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INTRODUCTION 

The main purpose of spatial access 

methods is to support efficient selection of 

objects based on spatial properties. Spatial 

access methods are also used to implement 

efficiently map overlays and spatial joins. 

 

Conventional databases are related to non-

spatial data which are not referenced 

(directly or indirectly) to multidimensional 

space such as maps, geometric information 

etc. Generally, non-spatial data are one 

dimensional and independent. The 

multidimensional data cannot be stored in 

conventional database approaches. So the 

requirement of spatial database systems 

has emerged. 

 

A spatial database system (SDS) [1] is a 

software system used for storage and 

retrieval of data and provides tools for 

referencing the spatial data (providing at 

least spatial indexing and spatial join 

methods).In spatial databases, data is 

associated with spatial coordinates and is 

retrieved based on spatial proximity. 

 

A spatial data is a data that is present in 2-

D or 3D or even a higher dimensional 

space. (Or) A spatial data object may be 

composed of a single point or several 

thousands of polygons, arbitrarily 

distributed across space. A spatial data has 

following characteristics [2] 

 Complex structure 

 Dynamic 

 No standard algebra defined on spatial 

data 

 Spatial operations are not closed 

 Computational cost vary among spatial 

database operations (Expensive)  

 

Spatial indexing and clustering methods 

must be taken in account. Without a spatial 

index, each object in the database has to be 

tested to tell whether it meets the spatial 

selection criterion; a „full table scan‟ in a 

relational database. Full Table Scan is also 

known as Sequential Scan. In Full Table 

Scan the database is scanned where each 

row of the table is read in a sequential 

(serial) order and the columns encountered 

are tested for the validity of a condition.  

 

As spatial datasets are typically very large, 

such checking is not agreeable in practice 

for interactive use and most other 

applications. Therefore, a spatial index is 

requirement to find the required objects 
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efficiently without considering every 

object. [3] 

In some cases the total dataset fits in main 

memory, it is enough to know the address 

of the requested objects. As the main 

memory storage allows random access and 

does not have significant delays. However, 

most spatial datasets are so large that they 

cannot reside in the main memory of the 

computer and must be stored in secondary 

memory, such as its hard disk. 

 

Clustering is desirable for group those 

objects which are often requested together. 

Otherwise, many different disk pages will 

have to be fetched which results in slow 

response. In a spatial context, clustering 

infers that objects which are closer in 

reality are also stored closer in memory. 

Many strategies for clustering objects in 

spatial databases adopt some form of 

„SFC‟ by ordering objects according to 

their arrangement along a path that 

traverses all parts of the space. 

 

Most of the indexes are based on the 

principle of divide and conquer. Indexing 

structures typically follow hierarchical 

approach. This approach is obviously 

suitable for a database system where the 

memory space is limited, and the pruning 

of a search is performed such that the more 

detail to be examined. Hierarchical 

structures are proficient in range 

searching.  

 

Indexing in spatial database is different 

from conventional databases as the data 

stored in SDS is multi-dimensional objects 

and its associated coordinates. Search 

operation also varies as the spatial object 

properties (Geometry: location, size, 

shape. Spatial relationships: distribution, 

neighborhood, proximity) are considered 

not the attribute values. 

 

Principles of Spatial Data Access and 

Search 

The key principle leading the searching 

algorithm is dividing of the search space 

into regions. Considered simply, this 

consists of placing data into uniquely 

identifiable boxes or cells. These methods 

are categorized by considering spatial 

indexing because with each block the 

information is stored such that the block is 

occupied by the spatial object or part of 

the object is known. 

 

Jones (1997) distinguishes two types of 

space decomposition or space partitioning: 

[4] [55] as shown in fig 1. 

 Regular decomposition 

 Object-directed decomposition.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Space Decomposition 
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REGULAR DECOMPOSITION 

It is also known as space driven index. The 

space is divided in a regular or semi- 

regular manner independent of the 

distribution of objects (i.e., indirectly 

related to the objects in the space). Objects 

are mapped to the cells according to some 

geometric criterion. 

 

 
 

Fig 2: Space Driven Index 

 

Object Directed Decomposition 

Object Directed Decomposition is also 

known as data driven index. The division 

of the index space is determined directly 

by the objects. This technique divides the 

space by means of the coordinates of 

individual data points or of the extents or 

bounding rectangles or spatial objects 

which are to be stored. There is a 

multiplicity of object-directed 

decomposition search methods. The most 

common are: 

 Binary tree 

 R-tree
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Fig 3: Data Driven Index 

 

Object-Directed Decomposition (Data 

Driven Indexes) 

Data Driven Indexing methods also known 

as Object-Directed Decomposition. Here, 

the objects decide the division of space 

(e.g. the 2D space containing the lines) 

into regions called buckets. They are 

commonly known as bucketing methods. 

There are some principal methods 

decomposing the space from which the 

data is drawn.  

 

One approach to data driven indexes is for 

partition the data by relating divide-and- 

conquer strategies where individual data 

points or lines can be selected to subdivide 

the data space into consecutively smaller 

half-spaces (Binary-tree). Another method 

buckets the data based on the idea of a 

minimum bounding (or enclosing) 

rectangle (R-tree). 

 

Such strategies generate hierarchical or 

tree data structures, in which traversing 

down each branch of the tree should result 

in reducing the volume of data at each 

stage. The branching factor defines the 

number of branches at each split and the 

number of leaves at the end of each 

branch. 



 

 

 

 

5 Page 1-25 © MAT Journals 2018. All Rights Reserved 

 

Journal of Web Development and Web Designing  

Volume 3 Issue 1  

Binary-Tree based Indexing Techniques 

The binary search tree is a basic data 

structure for representing data items whose 

index values are organized by some linear 

order. The idea of repeatedly dividing the 

data space has been adopted and 

generalized in many sophisticated indexes. 

 

K-D-Tree [5] [54] a binary search tree that 

stores points of the k-dimensional space. 

At each intermediate node, the k-d-tree 

divides the k-dimensional space in two 

parts by a (k-1)-dimensional hyperplane. 

The direction of the hyperplane, i.e. the 

dimension based on which the division is 

made, alternates between the k possibilities 

from one tree level to the next. Each 

splitting hyperplane contains at least one 

point, which is used as the hyperplanes 

representation in the tree. 

 

Adaptive K-D-Tree [6] A better version of 

k-d tree is the adaptive k-d-tree. While 

dividing, the adaptive k-d-tree selects a 

hyperplane that divides the space in two 

sub-spaces with equivalent number of 

points. The hyperplanes are still parallel to 

axes, but they do not contain a point, and 

they do not have to firmly alternate. 

Interior nodes of the tree hold the 

dimension (e.g. x or y), and the coordinate 

of the corresponding split. All points are 

kept at the leaves, and a leave can contain 

up to a fixed number of points, if this 

number is exceeded, a split takes place. 

 

K-D-B-Tree [7] pools properties of both 

the adaptive k-d-tree and the B-tree. It uses 

hyperplanes to split the space arbitrarily 

more than one hyperplanes divide a tree 

node (depending on the tree‟s storage 

utilization) in a equivalent number of 

disjoint regions. All nodes of the tree 

relate to disk pages. A leaf node stores the 

data points that are placed in the respective 

partition the leaf states. Like the B-tree, 

the K-D-B-Tree is perfectly balanced, 

however, it cannot guarantee storage 

utilization. 

hB-Tree [8](holey brick B-tree)is a new 

multi-attribute index structure. It allows the 

data space to be holey, allowing removal 

of any data subspace from a data space. 

The concept of holey bricks has been used 

in as an effort to improve the clustering of 

data in a kd-tree known as the BD-tree. 

The hB-tree structure is based on the K- 

D-B-tree structure, but it allows the data 

space associated with a node to be non- 

rectangular and it uses kd-trees for space 

representation in its internal nodes. It is a 

height-balanced tree. Here, the leaf nodes 

are known as data nodes and the internal 

node are known as index nodes. An index 

node data space is a union of its child node 

subspaces which are obtained through kd-

tree recursive division. 

 

hBπ-Tree [9]The hB-tree is extended to 

allow for concurrency and recovery by 

transforming it in such a way that it 

becomes a special case of the π-tree. 

Consequently, the new structure is called 

the hBπ-tree. As a result of these 

modifications, the new structure can 

directly take advantage of the π-tree node 

consolidation algorithm. The lack of such 

an algorithm has been one of the major 

drawback of the hB-tree. Furthermore, the 

hBπ-tree corrects a flaw in the 

splitting/posting algorithm of the hB-tree 

that may occur for more than three index 

levels. The essential idea of the correction 

is to impose limitations on the splitting/ 

posting algorithms, which in turn affects 

the space occupancy. 

 

4D-Tree [10] is used to store a bounding 

box by keeping the minimum and 

maximum points together in one 4D point. 

This technique can be used to simplify 

other geometric data structures that are 

originally suitable only for storing and 

retrieving points. 
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GBD-Tree [11] The BD-tree is prolonged 

to a balanced multi-way tree called the 

GBD-tree (generalized BD-tree). In 

addition to a DZ expression, a bounding 

rectangle is used to demonstrate data space 

that confines the objects whose centroids 

fall inside the region defined by the DZ 

expression. Centroids of objects are used 

to specify placement of objects in the 

correct bucket. While a DZ expression is 

used to confirm the position in the tree 

structure where an entity is found based on 

its centroid, a bounding rectangle is used 

in connection search. 

 

LSD-tree [12] As an enhancement to the 

fixed size space partitioning of the grid 

files, a binary tree, called the Local Split 

Decision tree (LSD-tree) that supports 

arbitrary split position was proposed. A 

split position can be chosen such that it is 

optimal with respect to the current cell. 

The directory of an LSD-tree is similar to 

that maintained by the kd-tree. Each node 

of the LSD-tree represents one split and 

stores the split dimension and position, 

and each leaf node points to a data bucket. 

 

BSP Tree [13] a data structure which is 

not built on a rectangular division of 

space. It uses the line segments of the 

polylines and the edges of the polygons to 

split the space in a recursive manner. The 

BSP-tree (Binary Space Partitioning) 

imitates this recursive division of space. 

Each time a (sub) space is divided into two 

subspaces by a so-called splitting 

primitive, a equivalent node is added to the 

tree. The BSP-tree implies an organization 

of space by a set of convex subspaces in a 

binary tree. This tree is beneficial during 

spatial search and other spatial operations. 

 

Skd-Tree [14] Spatial kd-tree (skd-tree) in 

an attempt to avoid object duplication and 

object mapping. At each node of a kd-tree, 

a value (the discriminator value) is 

selected in one of the dimensions to 

partition a k-dimensional space into two 

subspaces. The skd-tree allows regions to 

overlap. 

 

Bkd-tree [15] is an indexing technique for 

large multidimensional point data sets. The 

Bkd-tree is an I/O-efficient dynamic data 

structure based on the kd-tree. The Bkd-

tree consists of a set of balanced kd-trees. 

Each kd-tree is laid out (or blocked) on 

disk similarly to the way the K-D-B-tree is 

laid out. To store a given kd-tree on disk, 

we first modify the leaves to hold points, 

instead of just one. In this way, points are 

packed in blocks. 

 

B-tree based Indexing Techniques 

B+-trees have been commonly used in data 

intensive systems to facilitate query 

retrieval. The widespread acceptance of 

the B +-tree is its height-balanced 

characteristic, making it best for disk I/O 

where data transfer is in the unit of page. It 

has become an underlying structure for 

many new indexes. In this section, we 

discuss indexes based on the concept of 

the hierarchical structure of B +-trees. 

 

R-Trees [16] [54] [55] are hierarchical 

data structures, intended for efficient 

indexing of multidimensional objects with 

spatial extent. R-trees are used to store, 

rather than the original space objects, their 

minimum boundary boxes (MBBs). The 

MBB of an n-dimensional object is 

defined to be the minimum n-dimensional 

rectangle that contains the original object. 

Similar to B-trees, the R-trees are balanced 

and they ensure proficient storage 

utilization. Each R-tree node relates to a 

disk page and an n-dimensional rectangle. 

Each non-leaf node holds entries of the 

form (ref, rect), where ref refers to the 

address of a child node and rect refers to 

the MBB of all entries in that child node. 

Leaves hold entries of the same format, 

where ref points to a database object, and 

rect is the MBB of that object. 
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Greene’s [17] The coverage of covering 

rectangles and overlaps between them in 

the R-tree are affected by the objects are 

being dividing into groups by its splitting 

algorithm. In Greene‟s splitting algorithm, 

two most distant rectangles are selected 

and for each dimension, the separation is 

calculated. Each separation is normalized 

by dividing it with the interval of the 

covering rectangle on the same dimension, 

instead of by the total width of the entire 

group. Along the dimension with the largest 

normalized separation, rectangles are 

ordered on the lower coordinate. The list is 

then divided into two groups, with the first 

(M+1)/2 rectangles into the first group and 

the rest into the other. 

 

R+-Tree [18] [55] is introduced as a way 

to overcome the problem of inefficient 

searching that arises when sibling nodes 

overlap in the R-tree. As a direct solution 

to these problems they use clipping, i.e. 

there is no overlap between in-between 

nodes of the tree at the same level, and 

objects that intersect more than one MBB 

at a specific level are clipped and stored on 

several different pages. As a result, point 

queries on the R+-tree require traversing 

only one path of the tree. The price to pay 

is the increase of storage requirement of 

the tree. 

 

R*-Tree [19] [55] this variety presents a 

new insertion policy, that significantly 

improves the performance of the tree. The 

key objective of this policy is to minimize 

the overlap region among sibling nodes in 

the tree. A straightforward benefit of this is 

the minimization of the tree paths that are 

traversed at an object search. 

 

TV Tree [20] [54] (Telescopic Vector) tree 

is dynamically contracting and spreading 

feature vectors. Like any other tree, it 

arranges the data in a hierarchical 

structure: Objects (i.e. feature vectors) are 

grouped into leaf nodes of the tree, and the 

explanation of their Minimum Bounding 

Region (MBR) is stored in its parent node. 

Parent nodes are recursively grouped too, 

until the root is formed. 

 

Packed R-Tree [21] [55] Packed R-trees 

were introduced to minimize the coverage 

and overlap of rectangles by building an R-

tree statically. It was shown that for point 

data, it is possible to divide points into 

groups such that the bounding rectangles 

of these groups do not overlap. However, 

to achieve zero overlap may require 

rotating the orientation of the entire 

database, which may not be possible or 

beneficial. Further, zero overlap is 

achievable only at the leaf level of the R-

tree with static construction. For bounding 

rectangles associated with the non-leaf 

nodes, overlap is sometimes unavoidable. 

The main objective of the algorithm is to 

reduce the storage space, the coverage and 

overlap of rectangles, in order to improve 

the search efficiency. 

 

Cell Tree with Oversized shelves [22] The 

fragmentation effect is even more serious 

when the database becomes more 

populated. Each split of a node leads to a 

decrease in the node data space but to an 

increase in the number of nodes per object. 

To overcome the fragmentation and 

duplication problems in cell tree, proposed 

to store oversized objects which may 

greatly increase the number of object 

identifiers being stored in the leaf nodes in 

separate "oversize shelves". These 

oversize shelves are data nodes related to 

interior nodes in the cell-tree, in one way, 

creating the tree to be not height-balanced. 

The assignment of a new object in the sub-

tree or oversize shelf requires some 

optimization. The oversize page shelf can 

be spread out and a split on this shelf is 

essential. 

 

P Tree [23] (J) In various applications, 

intervals are not a good estimate of the 

data objects enclosed. In order to combine 

the elasticity of polygon-shaped containers 
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with the ease of the R-tree autonomously 

proposed different variations of polyhedral 

trees or P-trees. 

 

RD Tree [24] is a variant of R-Tree, a 

popular access method for spatial data. RD 

stands for "Russian Doll", which describes 

the transitive containment relation that is 

fundamental to the tree structure. 

 

SS-Tree [25] is an index structure 

designed for similarity indexing of 

multidimensional point data. It is an 

enhancement of the R*-tree and improves 

the performance of nearest neighbor 

queries by altering the following respects. 

Initially, it employs bounding spheres 

rather than bounding rectangles for the 

region shape. Secondly, the SS-tree 

modifies the forced reinsertion mechanism 

of the R*- tree. When a node or a leaf is 

full, the R*- tree reinserts a portion of its 

entries rather than splits it, unless 

reinsertion has been made on the same tree 

level. On the other hand, the SS-tree 

reinserts entries unless reinsertion has been 

made at the same node or leaf. This 

promotes the dynamic reorganization of 

the tree structure. 

 

SR-Tree [26] The structure of the SR-tree 

is based on that of the R-tree, in common 

with the R*-tree and the SS-tree, and 

corresponds to the nested hierarchy of 

regions. However, the distinctive feature 

of the SR-tree is that it specifies a region 

by the intersection of the bounding sphere 

and the bounding rectangle of underlying 

points. Incorporating bounding rectangles 

permits neighborhoods to be partitioned 

into smaller regions than the SS-tree and 

improves the disjointness among regions. 

This enhances the performance on nearest 

neighbor queries especially for high 

dimensional and non-uniform data which 

can be practical in actual image/video 

similarity indexing. 

 

 

Hilbert R-Tree [27] uses the center point 

Hilbert value of the MBR to organize the 

objects. When grouping objects (based on 

their Hilbert value), they form an entry in 

their parent node which contains both the 

union of all MBRs of the objects and the 

largest Hilbert value of the objects. Again, 

this is repeated on the higher levels until a 

single root is obtained. 

 

Parallel R-Tree [28] The underlying file 

structure is the R-tree. It is a server for 

spatial objects designed on a parallel 

architecture to achieve high throughput, 

under concurrent range queries. The first 

step is to decide on the hardware 

architecture. Then to distribute an R-tree 

over multiple disks. 

 

2+3 R-Tree [29] The two-dimensional 

points would represent the current spatial 

information about the data points, whereas 

the three-dimensional lines would the 

represent (piecewise) the historical 

information. In the 2+3 R-tree, even 

though the end time of an object's position 

is unknown, it is indexed under a two-

dimensional R- tree, keeping the start time 

of its position together with its id. Note 

that the original R- tree (or any of its 

derivatives) keep only the object's id (or a 

pointer to the actual data record) and its 

MBR in the leaf nodes. The two-

dimensional R-tree used in this method is 

thus marginally altered. 

 

2D R-Tree [30] The 2DR-tree is a height-

balanced, hierarchical spatial data structure 

that uses two-dimensional nodes. An MBR 

is stored in an appropriate location with 

respect to all other MBRs in the node. 

Using two-dimensional nodes allows 

spatial relationships to be preserved. The 

spatial relationships supported in the 2DR-

tree are north, northeast, east, southeast, 

south, southwest, west and northwest. A 

spatial relationship is defined between two 

objects using the centroids of their MBRs. 
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3D R-Tree [31] A spatiotemporal access 

structure. It uses standard R-trees to index 

multimedia data. It is widely used for 

indexing of spatial data in several 

applications, such as Geographic 

Information Systems (GIS), CAD and 

VLSI design, etc. Here R-trees are adapted 

in order to index either spatial, temporal or 

spatio-temporal occurrences of actors and 

relationships between them. 

 

DBM-Tree (Density-Based Metric tree) 

[32] The DBM-tree is a dynamic MAM that 

grows bottom-up. The objects of the 

dataset are grouped into fixed size disk 

pages, each page corresponding to a tree 

node. An object can be stored at any level 

of the tree. Its main intent is to organize 

the objects in a hierarchical structure using 

a representative object as the center of each 

minimum bounding region that covers the 

objects in a sub-tree. An object can be 

stored in a node if the covering radius of 

the representative covers it. 

 

DF-Tree [33] a new and efficient MAM. 

The main approach is to use global 

representatives for the whole tree. These 

global representatives will work together 

with the representatives of the nodes in 

order to decrease the number of distance 

calculations. 

 

Approximating and Eliminating Search 

Algorithm [34] (AESA) makes use of 

metric properties of given distance. The 

algorithm consists of 

 An efficient elimination rules and 

 An appropriate search for available 

rules by which maximum efficiency is 

maintained. 

For N prototypes, it uses pre-computation 

of triangular array of (N2-N)/2 distances 

between prototypes. By which Nearest 

Neighbour (NN) Search is carried out 

through a very small number of distance 

computations. Furthermore, for large N, 

this number of computations tends to be 

independent of N (asymptotic constant 

time- complexity). However, the great 

storage complexity and preprocessing time 

(O (N2)), severely limit the practical use 

of the AESA for large sets of prototypes. 

 

LAESA [35] (Linear AESA) a new 

version of the AESA, which uses a linear 

array of distance, but is strictly based on 

metric arguments like the original AESA. 

The technique starts by choosing "Base 

Prototypes" (BP) from the given set of 

prototypes which are comparatively a 

small set there by calculating the distances 

between these BP's and the finishing set of 

prototypes. 

 

Tree LAESA [36] (TLAESA) is based on 

the LAESA which reduces its average time 

complexity to sub-linear. The TLAESA 

algorithm consists of two parts: (1) 

preprocessing and (2) search. In the 

preprocessing algorithm, two structures are 

built: a binary search tree storing all 

prototypes and a table of distances. The 

search algorithm is essentially a traversal 

of the binary tree where the table of 

distances is used in order to avoid the 

exploration of some branches of the tree. 

 

Approximating k-LAESA [37] (Ak-

LAESA) is a fast classifier for general 

metric spaces (no vector space required) 

based on the LAESA algorithm The aim is 

to achieve classification rates similar to 

those of a k-NN classifier, using k 

neighbors that may not be the k-NNs and 

preserving the main properties of LAESA 

(distance computations and time and space 

complexities). It gets error rates very close 

to those of a k-NN classifier, while 

computing a much lower number of 

distances (the number of distances of the 

Ak-LAESA algorithm is accurately the 

same that the calculated by the LAESA 

algorithm). 
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ROAESA [38] (Reduced Overhead 

AESA), related to both AESA and 

LAESA, that decreases this overhead cost 

by using a heuristic to limit the set of 

objects whose lower-bound distances dlo 

are updated at each step of the algorithm. 

 

Fixed Queries Trees [39] (FQ Trees) are 

an evolution where the same pivot is used 

for all the nodes of the same level of the 

tree. In this case the pivot does not need to 

belong to the sub-tree. The main goal of 

this structure is to minimize the number of 

element comparisons, as opposed to other 

data structure operations (such as tree 

traversal). This is especially important in 

applications where computing distances 

between two elements is a much more 

expensive operation than, say following 

pointers. This tree structure differs from 

other tree structures where the keys on each 

level of the tree are all the same, so we 

have just one key per level. In other words, 

which comparisons we make does not 

depend on the results of previous 

comparisons up the tree. Thus the name 

fixed-queries tree or FQ-tree. A major 

strength of FQ- trees is that the data 

structure and the search algorithms are 

independent of the distance function, as 

long as it satisfies the triangle inequality. 

 

Fixed Height fq-tree [40] (fhq-tree) A 

variant called FQ Tree where all the leaves 

are at the same depth h, regardless of the 

bucket size 

 

Fixed Queries Array [41] (FQA) has two 

interesting properties. First, it is the first 

data structure which is able to achieve a 

sub linear (in the database size) number of 

side computations without using any extra 

space. Next, it is capable to trade number 

of pivots k for their precision, so as to 

enhance the usage of the available space. 

FQA are based in a common idea: k pivots 

are picked and each object is plotted to k 

coordinates which are its distances to the 

pivots. Later, the query q is also plotted 

and if it varies from an object in more than 

r along some coordinate then the element 

is filtered out by the triangle inequality. 

That is, if for some pivot pi and some 

element v of the set it holds |d(q, pi) − d(v, 

pi)| > r, then we know that d(q, v) > r 

without need to evaluate d(v, q). The 

elements that cannot be filtered out using 

this rule are directly equated. 

 

Sparse Spatial Selection [42] (SSS) is a 

new pivot-based technique. The main 

characteristic of this method is that it 

guarantees a good pivot selection more 

efficiently. In addition, SSS adapts itself to 

the dimensionality of the metric space we 

are working with, without being necessary 

to specify in advance the number of pivots 

to use. Furthermore, SSS is dynamic, that 

is, it is capable to support object insertions 

in the database efficiently, it can work 

with both continuous and discrete distance 

functions, and it is suitable for secondary 

memory storage. 

 

Vantage Point Tree [43] (VP Tree) Like 

the KD-Tree, each VP-Tree node 

cuts/divides the space. A VP-Tree node 

employs distance from a selected vantage 

point rather than using coordinate values. 

Near points make up the left/inside 

subspace while the right/outside subspace 

consists of far points. A binary tree is 

formed by recursion. Each of the tree 

nodes identifies a vantage point, and for its 

children (left/right), the node contains 

bounds associated to subspace by the 

vantage point. Other forms of the VP-Tree 

include additional subspace bounds and 

may employ buckets near leaf level. 

 

VPS-Tree [43] an element of S is compared 

with the vantage point belonging to each of 

its ancestors in the tree. This information 

is also not captured in the simple tree. It 

consists of a database element identifier 

„id‟, and a list „hist‟ of distances from the 

item to each vantage point tracing back to 

the root. A list of these structures is 
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initialized with the history set to null from 

the entire database. The algorithm then 

recursively splits the list into two lists L 

and R, while adding to the history of each 

item. Each resulting tree node contains a 

list „bnds‟ which have a range interval for 

its corresponding subspace which is seen 

by each ancestral vantage point. 

 

VPSB-Tree [43] Here we consider one way 

to form buckets of leaves in order to save 

space while preserving the notion of 

ancestral history present in the VPS-Tree. 

Buckets are formed by descending sub-

trees near leaf level into a flat structure. 

Each bucket contains say no element 

records. Each record must specify an id, 

and in addition holds distance entries for 

every ancestor. We call the resulting 

structure a VPSB-Tree. 

 

Multi-Vantage Point Tree [44] (MVP 

Tree) A distance based index structure 

called multi-vantage point (MVP) tree for 

similarity queries on high-dimensional 

metric spaces. The MVP Tree uses more 

than one vantage point to partition the 

space into spherical cuts at each level. It 

also utilizes the pre-computed (at 

construction time) distances between the 

data points and the vantage points. 

 

Excluded Middle Vantage Point Forest 

[45] is a variant of VP-trees. It is intended 

for radius-limited nearest neighbor search, 

that is, where the nearest neighbor is 

restricted to be within some radius r* of 

the query object. This technique is based 

on the insight that most of the complexity 

in performing search in methods is based 

on binary partitioning, such as the VP-tree, 

is due to query objects that lie close to the 

partition values, thus causing both 

partitions to be processed. 

 

 

 

 

Regular Decomposition (Space Driven 

Indexes) 

Applying the regular decomposition 

methods, the data space is partitioned in a 

regular or semi-regular way. The 

subdivision of space should be specified 

and then object will be addressed in the 

new structure. The geometry of the object 

is distributed between several adjacent 

cells (or regions). The objects details are 

generally kept intact, whereas the spatial 

index cells store locations of the database 

positions of the entire objects that intersect 

them. The data related with each cell are 

stored in one or more records and the 

address of which is given in terms of the 

coordinates of the lower corner of the cell. 

For the regular decomposition of space, 

cells commonly have three different 

shapes: 

 Triangle: convenient for representing 

approximately spherical surfaces. 

Triangles have the advantage that they 

can be regularly partitioned any 

number of times. 

 Rectangle: most appropriate because 

its edges can be aligned with the axis of 

a coordinate system. Rectangles 

simplify inclusion analysis within 

rectangular search window. 

 Hexagon: suitable for mapping 

statistical properties since their 

neighboring centers are equidistant in 

all six directions. 

 

Space Filling Curves [3] order the points 

in a discrete two-dimensional space. This 

method is also called tile indexing. It 

converts a two-dimensional problem into a 

one-dimensional one, so it can be used in 

combination with a familiar data structure 

for one-dimensional storage and retrieval. 

 

 The row ordering simply numbers the 

cells row by row, and within each row 

the points are numbered from left to 

right 

 The row prime (or snake-like, or 
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boustrophedon) ordering is a variant in 

which alternate rows are traversed in 

opposite directions 

 Column and column prime orderings 

in which the roles of row and column 

are transposed. 

 Bitwise interleaving of the two 

coordinates results in a one-

dimensional key, called the Morton 

key. The Morton key is also known as 

Peano key, or N- order, or Z-order. 

 Hilbert ordering is constructed using 

the classic Hilbert-Peano curve. 

 Gray ordering is achieved by bitwise 

interleaving the Gray-codes of the x 

and y coordinates. As Gray codes have 

the property that successive codes vary 

by exactly one bit position, a 4-

neighbour cell only differs in one bit 

 The Cantor-diagonal ordering is that 

the numbering of the points is adapted 

to the fact that we are dealing with a 

space that is bounded in all directions 

 The Spiral ordering 

 The Sierpinski curve, which is based 

on a recursive triangle subdivision.

 

 
 

Fig 4: Space Filling Curves 
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DOT [46] (DOuble Transformation) 

approach has two transformations: first, a 

covering rectangle of an object in a k-

dimensional space is mapped into a point 

in a nk-dimensional space; second, the nk-

dimensional point is then mapped onto a 

point in a one-dimensional space using the 

distance preserving mapping concept. The 

second transformation can be any 

mapping, such as Hilbert or Peano 

mapping. 

 

UB Tree [47] is based on the grouping of 

one dimensional index structures and 

space-filling curves. i.e., combines the B-

Tree and the Z-curve. Together with its 

sophisticated query processing algorithms 

it has proven its performance advantages 

in numerous application domains. As the 

UB-Tree is based on the standard B-Tree, 

which is the basic index structure in almost 

every commercial DBMS, the task of 

integrating this MAM into an existing 

kernel becomes less complex and less 

costly. 

 

Z-ordering [48] [55] is based on the Peano 

curve. A simple algorithm to obtain the z-

ordering representation of a given 

extended object can be described as 

follows. Starting from the (fixed) universe 

containing the data object, space is split 

recursively into two subspaces of equal 

size by (d-1)-dimensional hyperplanes. 

 

Quad-tree Based Structures 

 

Quadtrees [49] are one of the first data 

structures for higher-dimensional data. A 

quadtree is a rooted tree in which every 

internal node has four children. Every 

node in the quadtree corresponds to a 

square. If a node v has children, then their 

corresponding squares are the four 

quadrants of the square of v ¾ hence the 

name of the tree. This infers that the 

squares of the leaves together form a 

portion of the square of the root. We call 

this subdivision as the quadtree 

subdivision. The children of the root are 

labeled NE, NW, SW, and SE to indicate 

to which quadrant they belong to; NE 

stands for the north-east quadrant, NW for 

the north-west quadrant, and so on. 

 

Point Quadtree [49] [54] resembles the 

KD-tree. The modification is that the space 

is divided into four rectangles instead of 

two. The input points are stored in the 

internal nodes of the tree. 

 

Region Quadtree [50] is used to store a 

rasterized estimate of a polygon. First, the 

area of interest is bounded by a square. A 

square is repetitively divided into four 

squares of equal size until it is entirely 

inside or outside the polygon or until the 

maximum depth of the tree is reached. 

PM Quadtree [51] A polygonal map, a 

collection of polygons, can be represented 

by the PM Quadtree. The vertices are stored 

in the tree similar as in the PR Quadtree. 

The edges are divided into q-edges which 

entirely fall within the squares of the 

leaves. There are seven classes of q-edges. 

The first class of q-edges is those that 

interconnect one boundary of the square 

and meet at a vertex within that square. 

The other six classes intersect two 

boundaries and are named after the borders 

they intersect: NW, NS, NE, EW, SW and 

SE. For each non-empty class, the q-edges 

are stored in a balanced binary tree. 

 

PMR Quadtree [52] (for PM Random) is 

based on the observation that any rule that 

divides up the line segments among 

quadtree blocks in a reasonably uniform 

fashion can be used as the basis for a PM-

like quadtree. The PMR quadtree uses a 

couple of rules, one for splitting and one 

for merging, to dynamically organize the 

data. 

 

Quad-CIF-Tree [53] (CIF - Caltech 

Intermediate Form) was proposed for 

representing a set of small rectangles for 

VLSI applications. It is organized in a way 
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similar to the region quad-tree. A region is 

recursively partitioned until the resulting 

quadrants do not contain any rectangle. 

During the subdivision, all rectangles that 

intersect with either of the two dividing 

lines are associated with the dividing lines. 

The rectangles that are associated with a 

quadrant must not belong to any ancestor 

quadrant. It is assumed that no two 

rectangles overlap. 

 

MX Quadtree [54] is probably the 

simplest way of representing line data, and 

is a region quadtree in which lines are 

represented by regions which are one pixel 

wide. It can be viewed as a quadtree 

representation of a chain code. 

 

Linear QuadTree [55] The key remark is 

that once the entries [mbb, oid] has been 

assigned (as for a regular quadtree) to a 

quadtree leaf with label l , and stored in a 

page with address p, then we index in a B+ 

tree the collection of pairs (l , p) keyed on  

the leaf label l.Such a organization 

provides an ice packing of quadtree labels 

into B+ tree leaves. The packing is 

dynamic; that is, it persists when inserting 

and deleting objects in the collection. 

 

Hashing based Structures 

 

Linear Hashing[56][57] Linear hashing 

divides the universe [A, B) of possible hash 

values into binary intervals of size (B-

A)/2kor (B-A)/2k+1 for some k ≥ 0.Each 

interval corresponds to a bucket, that is, a 

collection of records stored on a disk page. 

T € [A, B) is a pointer that separates the 

smaller intervals from the larger ones: all 

intervals of size (B-A)/2kare to the left of t 

and all intervals of size (B-A)/2k+1 are to 

the right of t. 

 

Multidimensional Linear Hashing. 

Unlike multidimensional extendible 

hashing, multidimensional linear hashing 

uses no or only a very small directory. It 

therefore occupies relatively little storage 

compared to extendible hashing, and it is 

usually possible to keep all relevant 

information in main memory. 

 

MOLHPE [58] A variation of linear 

hashing called Multidimensional Order- 

Preserving Linear Hashing with Partial 

Expansions (MOLHPE). This organization 

is based on the idea of partially extending 

the buckets without increasing the file size 

at the same time. MOLHPE outperforms 

for uniformly distributed data. It fails for 

non-uniform distributions, mostly because 

the hashing function does not adapt 

elegantly to the given distribution. 

 

Z-Hashing [59] uses a space-filling curve 

technique called z-ordering to guarantee 

that points located close to each other are 

also stored close together on the disk. 

 

Extendible Hashing [60] As does linear 

hashing, extendible hashing organizes the 

data in binary intervals, here called cells. 

Overflow pages are avoided in extendible 

hashing by using a central directory. Each 

cell has an index entry in that directory; it 

firstly corresponds to one bucket. If during 

an insertion a bucket at maximal depth 

exceeds its maximum capacity, all cells are 

split into two. New index entries are 

created and the directory doubles in size. 

Since each bucket was not at full capacity 

before the split, it may now be possible to 

fit more than one cell in the same bucket. In 

that case, adjacent cells are regrouped in 

data regions and stored on the same disk 

page. 

 

Cell Methods based on Dynamic 

Hashing 

 

Grid Files [61] [55] A file data structure 

aimed to manage a disk allocation storage 

in terms of fixed size units like disk 

blocks, pages or buckets depending on 

level of description. It is a variant of grid 

method where the requirement is cell 
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division lines must be equidistant. Hashing 

method for multidimensional points. It is 

an extension of extensible hashing. 

 

Multi-layer Grid File [62] To enhance the 

search performance of the grid file, a 

multi-layer grid file which neglects object 

mapping was proposed. In such a 

structure, a map space may consist of 

several grid files that cover the same 

space. When a grid file is divided, all 

objects that are not cut by the dividing 

hyperplane are scattered among the two 

new subspaces and objects that are cut are 

stored in the next layer grid file. There 

may be several layers of grid files that 

store un-partitioned objects, and each layer 

has different dividing hyperplanes. At the 

maximal layer, the objects are clipped if 

they overlap the dividing hyperplane. 

 

Two-Level Grid File [63] The basic idea 

of it is to use a second grid file to manage 

the grid directory. The first level is called 

the root directory. Entries of the root 

directory contains pointers to the directory 

pages of the lower level, which in turn 

contain pointers to the data pages. By 

having a second level, splits are often 

limited to the subdirectory regions without 

affecting too much of their surroundings. 

 

Twin Grid File [64] It is other hashing 

method. It tries to increase space 

utilization compared to the original grid 

file by introducing a second grid file. The 

relationship between these two grid files is 

not hierarchical but somewhat more 

balanced. Both grid files span the whole 

space (universe). The distribution of the 

data among the two files is performed 

dynamically. 

 

R File [65] The R-file is based on the 

concept of multi-layer grid files. The R-

file is different from the multi-layer grid 

file in that the R-file has only one layer 

and is intended for non-zero sized objects. 

In the R-file, cells are divided using the 

dividing strategy of the grid file and a cell 

is split when overflowed. In order for cells 

to robustly contain the spatial objects, cells 

are divided recursively by repeated halving 

till the smallest cell that encloses the 

spatial objects is obtained. Spatial objects 

that are completely contained in a cell are 

stored in its related data page, and those 

that intersect the dividing line are stored in 

the original cell. If the number of spatial 

objects that intersect a division is more 

than what can be stored in a data page, 

partitioning line along the other 

dimensions will be used. If all records lie 

on the cross point of partitioning lines, 

they cannot be partitioned by any 

partitioning lines, and in such a case a 

chain of buckets is used. 

 

Filter Tree [66] is a hierarchical 

organization that tends to separate spatial 

entities by size, placing larger entities at 

the higher levels of the Filter Tree, and 

smaller entities at lower levels. Within 

each level, index entries for the entities are 

ordered by a space-filling curve (Hilbert 

curve). This allows the algorithms to use 

bulk I/O requests, exploiting the locality in 

the index information, and minimizing the 

number of I/O transfers from disk. Filter 

Trees engage a recursive binary partition 

of the data space in each dimension. 

Entities related with a particular level are 

all grouped together. Each entity is placed 

at the lowest-level of the tree at which it is 

entirely enclosed by a single cell of the 

division at that level. This method of 

determining the level at which an entity is 

stored tend to cause larger entities to be 

stored high in the tree (because they can be 

enclosed only in large cells), whereas 

smaller entities tend to sink to lower levels 

of the tree since they fit into smaller cells. 

Sometimes small entities will be caught at 

higher levels in the tree because they 

happen to lie across the boundary between 

two large cells. However, under reasonable 

statistical assumptions about where entities 

are placed, the fraction of such entities is 
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small. 

 

EXCELL method [67] (Extendible CELL) 

related to the grid file. It is a bintree with a 

directory in the form of an array providing 

access by address computation. It can also 

be viewed as an adaptation of extendible 

hashing to multidimensional point data. In 

contrast to the grid file, where the dividing 

hyperplanes may be spaced arbitrarily, the 

EXCELL method decomposes the space 

regularly ad all grid cells are of equal size. 

 

Segment Index [68] approach combines 

features of the memory resident Segment 

Tree data structure with those of a class of 

database access methods that are based on 

paged, multi-way, tree-structured indexes. 

The Segment Tree data structure stores line 

segments in a binary tree by storing the 

segment endpoints in the leaf nodes, and 

then associates each interval with the 

highest level no& N that spans the values 

corresponding to the left and right children 

of N. 

 

Slim-tree [69] a dynamic tree for 

organizing metric datasets in pages of 

fixed size. The Slim-tree uses the "fat-

factor" which provides a simple way to 

quantify the degree of overlap between the 

nodes in a metric tree. It is well-known that 

the degree of overlap directly affects the 

query performance of index structures. 

There are many suggestions to reduce 

overlap in multi- dimensional index 

structures, but the Slim- tree is the first 

metric structure explicitly designed to 

reduce the degree of overlap. 

 

Bisector Tree [38][70] (BST) it is often 

common to augment the gh-tree by 

including for each pivot the maximum 

distance to an object in its sub-tree 

yielding what are, in effect, covering balls. 

The resulting data structure is called a 

bisector tree (BST). The motivation for 

adding the covering balls is to speed up the 

search by enabling the pruning of elements 

whose covering balls are farther from the 

query object than the current candidate 

nearest neighbor (the farthest of the k 

candidate nearest neighbors) or are outside 

the range for a range query. 

 

GNAT [71] (Geometric Near-neighbor 

Access Tree) is a generalization of the 

GH- Tree, where more than two pivots 

may be chosen to partition the data set at 

each node. In particular, given a set of 

pivots P= {p1, …, pm}, we split S into S1, 

: : : , Sm based on which of the objects in P 

is the closest. It is also based on Voronoi 

cell- like partitioning. 

 

SA-Tree [72] (Spatial Approximation 

Tree.) was inspired by the Voronoi 

diagram, a widely used method for nearest 

neighbor search in point data. thesa-tree 

attempts to approximate the structure of 

the Delaunay graph. 

 

M-tree [38] [73] [74] is based on a 

hierarchical organization of data objects Oi 

€ S according to a given metric d. It is a 

distance-based indexing method designed 

to address this deficiency. Like other 

dynamic and paged trees, the M-tree 

structure consists of a balanced hierarchy 

of nodes. The nodes have a fixed capacity 

and a utilization threshold. Within M-tree 

hierarchy the objects are clustered into 

metric regions. The leaf nodes contain 

ground entries of the indexed data objects 

while routing entries (stored in the inner 

nodes) describe the metric regions. Its 

design goal was to combine a dynamic, 

balanced index structure similar to the R-

tree (which, in turn, was inspired by the B-

tree) with the capabilities of static 

distance-based indexes. 

 

D-Index [75] is an access organization for 

similarity search. It is a multi-level metric 

structure, consist of search-separable 

buckets at each level. The structure 

supports simple insertion and restricted 

search costs for the reason that at most one 
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bucket desires to be accessed at each level 

for range queries up to a predefined value 

of search radius ρ. At the same time, the 

applied pivot-based approach considerably 

reduces the number of distance 

computation in accessed buckets. 

 

eD-Index [76] An access structure for 

similarity self-join. The idea behind the 

eD- Index is to change the ρ-split function 

so that the exclusion set and separable sets 

overlap of distance. The objects which 

belong to both the separable and the 

exclusion sets are replicated. This 

principle, called the exclusion set 

overloading, ensures that there always 

exists a bucket for every qualifying pair (x, 

y)|d(x, y) ≤ μ ≤ €where the pair occurs. 

 

List of clusters [77] The LC splits the space 

into zones. Each zone has a center c and 

stores both its radius rp and the bucket I of 

internal objects, that is, the objects inside 

the zone. The LC splits the space into 

zones (or “clusters”). Each zone has a 

center c and a radius rc and it stores the 

internal objects I = {x € S, d(x, c) ≤ rc}, 

which are at distance at most rc from c. 

 

Recursive List of Clusters (RLC) [78] [79] 

which can be seen as a dynamic version of 

the LC. The RLC is composed by clusters of 

fixed radius, so the number of objects of 

each cluster can differ. 

 

List of Twin Clusters (LTC) [80] a new 

metric index specially focused on the 

similarity join problem. The data structure 

considers two lists of overlapping clusters, 

which we can call twin clusters. Each 

cluster is a triple (center, effective radius, 

internal bucket). Considering the LC idea, 

every object being a center is not included 

in its twin bucket. So, when solving range 

queries, most of the relevant objects would 

belong to the twin cluster of the object that 

we are querying for. 

 

 

Ball-and-Plane tree (BP-tree) [81] which 

is constructed by separating the dataset 

into compact clusters. It combines the 

advantages of both disjoint and non-

disjoint paradigms in order to attain a 

structure of tight and low overlapping 

clusters, yielding considerably better 

performance. BP-tree does not split the 

data set into disjoint or non-disjoint 

groups. Instead, it is an index structure that 

combines the advantages of both those 

strategies. BP-tree is an unbalanced tree 

index generated by the hierarchical 

partitioning of the dataset. Like other 

metric trees, the objects of the data set are 

stored into fixed size disk pages. Each 

page holds a predefined maximum number 

of objects K. 

 

Hybrid methods 

 

Buddy-Tree [82] The buddy-tree can be 

measured as a compromise of the R-tree 

and the grid-file. It ignores the down 

splitting of the K-D-B-tree, the overlap 

problem of the R-tree and the dependency 

of structure upon the inclusion of data. The 

buddy-tree generalize the buddy system of 

the grid-file to arrange correlated data 

proficiently, by bounding the data points 

firmly using the bounding rectangle 

concept of the R-tree and arrange the 

directory as in the R-tree. Like grid-files, 

the non-zero sized data have to be mapped 

into high dimensions. 

 

BANG File [83] (Balanced And Nested 

Grid) file is an interpolation-based grid file 

which is however different from the 

original grid file in that it allows two 

subspaces to intersect. The BANG file 

divides the data space into a hierarchy of 

sets of notational grid regions. Each of 

these grid regions can be identified by a 

unique pair (r, l), where r is the region 

number, and l is the granularity or level 

number. A space is obtained by recursively 

halving along some selected dimensions. 

That is, the level of the hierarchy of grid 
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regions is generated from the previous 

higher level by dividing along a selected 

dimension. 

 

BV-Tree [84] The BV-tree represents an 

effort to solve the d-dimensional B-tree 

problem, i.e.,, to find a generic 

generalization of the B-tree to higher 

dimensions. The BV-tree is not intended to 

be a concrete access method, but rather a 

conceptual framework that can be useful to 

a variety of existing access methods, 

including the BANG file or the hB-tree. 

 

G-tree [85] (grid tree) is based on the BD-

tree. The structure differs from the BD- 

tree in the way the partitions are mapped 

into buckets. To obtain a simple mapping, 

the G-tree sacrifices the minimum storage 

utilization that holds for the BD-tree. 

 

Generalized Grid File [86] (GGF) It is a 

multi-level grid file. The GGF acts like a 

B+ tree for a single dimensional data. With 

such a hierarchical formation, the property 

of "two disk accesses" for exact-match 

queries is no longer applicable. 

 

Pivoting M-tree (PM-tree) [87], exploiting 

pivot-based ideas for metric region volume 

reduction. 

 

Metric Index (M-Index) [88] defines a 

worldwide mapping schema from a 

generic metric space to a real numeric 

domain. Significantly, this schema has the 

capability to conserve the proximity of 

data, i.e. it map similar metric objects to 

close numbers in the numeric domain. The 

M-Index indexing and searching 

mechanisms make use of a set of reference 

objects and synergically exploit basically 

all known metric based principles of data 

separation, pruning and filtering. 

 

PLOP Hashing [89] (Piecewise linear 

order-preserving) hashing this structure 

can also be used as an access method for 

extended objects. A grid file extension was 

proposed for the storing of non-zero sized 

objects. The method is a multi- 

dimensional dynamic hashing scheme 

based on Piecewise Linear Order 

Preserving (PLOP) hashing. Like the grid 

file, the data space is partitioned by an 

orthogonal grid. However, instead of using 

k arrays to store scales that define dividing 

hyperplanes, k binary trees are to represent 

the linear scales. Each internal node of a 

binary tree stores a (k-1) dimensional 

partitioned hyperplane. Each leaf node of a 

binary tree is related with a k-dimensional 

subspace (a slice), where the interval along 

its related axis is a sub-interval and the 

other k-1 intervals assume the intervals of 

the global space. Each slice is addressed 

by an index i stored in its leaf node. 

 

Space-filling curve and Pivot-based B+-

tree (SPB-tree) [90] It stores complex 

objects in a separate random access file 

(RAF), and uses a B+-tree with minimum 

bounding boxes (MBB) to index objects 

after a two-stage pivot-and-SFC mapping. 

The SPB-tree is generic: it does not rely on 

the detailed representations of objects, and 

it can support any distance notion that 

satisfies the triangle inequality. 

 

Other kinds of indexing 

 

Bitmap Indices [91] [92] [93] [94] [95] 

Bitmap indices are a specialized type of 

index designed for easy querying on 

multiple keys, although each bitmap index 

is built on a single key. A bitmap index for 

a field F is a collection of bit-vectors of 

length n, one for each possible value that 

may appear in the field F. The vector for 

value v has 1 in position i if the i
th

 record 

has v in field F, and it has 0 there if not. 

For bitmap indices to be used, records in a 

relation must be numbered sequentially, 

starting from, say, 0. Given a number n, it 

must be easy to retrieve the record 

numbered n. This is particularly easy to 

achieve if records are fixed in size, and 

allocated on consecutive blocks of a file. 
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The record number can then be translated 

easily into a block number and a number 

that identifies the record within the block. 

 

Join Index [96] [97] [98] a simple data 

structure for improving the performance of 

joins in the context of complex queries. A 

Join Index is a data structure used for 

processing join queries in databases. Join 

indices uses pre-computation techniques to 

speed up online query processing and are 

useful for datasets which are updated 

rarely. For most of the joins, updates to 

join indices incur very little overhead. 

Some properties of a join index are 

 Efficient usage of memory and 

adaptiveness to parallel execution 

 Compatibility with other operations 

(including select and union) 

 Support for abstract data type join 

predicates 

 Support for multi-relation clustering 

and 

 Its use in representing directed graphs 

and in evaluating recursive queries. 

 

STARjoin & STARindex [99] STARjoin 

is a high-speed, single pass, parallelizable 

multi-table join. It outperforms many join 

methods implemented by traditional OLTP 

RDBMSs as it can join more than two 

tables in a single operation. Red bricks 

RDBMS supports the formation of 

specialized indexes called STARindexes, 

to significantly accelerate join 

performance. The STARindexes differs 

from traditional index structures like B-

tree or bitmapped indexes. STARindexes 

are formed on one or more foreign key 

columns of a fact table. 

 

OBSERVATIONS 

 

Some of the observations are as follows: 

 R
+
-tree > R-tree > k-d-B-tree When 

less overlap between data rectangles 

 R
*
-tree > Variants of the R-tree. R

*
-

tree has best storage utilization and 

insertion times. For all data list and 

queries, only number of disk accesses 

is measured. 

 Hilbert R-tree slightly better than R
*
- 

tree 

 Hilbert codes can therefore be used for 

bulk insertion into dynamic R
*
- tree. 

 Hilbert R-tree has better search result, 

while updates take about the same as 

for the R
*
- tree. 

 skd-tree > R-tree skd-tree requires 

more space than R-tree. 

 For large page size, the performance is 

in term of number of page accesses per 

search operation. 

 PMR-quadtree = R
*
-tree = R

+
-tree 

 R
+
- tree shows the best insertion 

Performance. 

 R
*
- tree occupies the least space and is 

more compact in term of the data. 

 When use line segments as test data for 

indexing. 

 R-file > R-tree 

 R-file has a 10-20% performance 

advantage over the R-tree on a data set 

with a high degree of overlap. 

 K-d trees out performs quad tress 

without requiring additional memory 

usage. 

 (Buddy tree, BANG file) > R-tree 

 For all data distributions in terms of 

measuring the number of page 

accesses. 

 SPB Tree achieves low-cost index 

storage, construction, and 

manipulation, supports efficient query 

processing in metric spaces and 

manage efficiently a large set of 

complex objects. 

  

CONCLUSION 

 

In this paper we presented a short 

overview of the current state in the field of 

development of the access methods. 

During the last four decades the access 

methods have been developed towards 

plenty of modifications of small number 
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basic ideas. It is important to remark that 

the research has been provided on software 

as well as on hardware levels.  

 

The survey of the access methods suggests 

that the context-free multi-dimensional 

access methods practically are not 

available. SPB tree outperforms in terms 

of low cost indexing and efficient query 

processing. K-d trees out performs quad 

tress without requiring additional memory 

usage. 
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