

1 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

A Big Data for Apache Cassandra

Anika Gupta

Department of Computer Science and Engineering, Punjab Technical University, Jalandhar, India

E-mail:anika.mit90@yahoo.com

Abstract

Apache prophetess may be a leading distributed info of alternative once it involves massive

information management with zero period, linear quantifiability, and seamless multiple

information center preparation. With progressively wider adoption of prophetess for on-line

dealing process by many Web-scale firms, there is a growing would like for a rigorous and

sensible information modeling approach that ensures sound and economical schema style.

This work i) proposes the primary query-driven massive information modeling methodology

for Apache prophetess, ii) defines vital information modeling principles, mapping rules, and

mapping patterns to guide logical information modeling, iii) presents visual diagrams for

prophetess logical and physical information models, and iv) demonstrates a

informationmodeling tool that automates the whole data modeling method.

Keywords: Apache cassandra, data modeling, automation, database design

INTRODUCTION

Apache Cassandra may be a leading

transactional, scalable, and highly-

available distributed info. It is known to

manage a number of the world’s largest

informationsets on clusters with several

thousands of nodes deployed across

multiple data centers. Cassandra

information management use cases

embody product catalogs and playlists,

sensing element information and net of

things, electronic communication and

social networking, recommendation,

personalization, fraud detection, and

diverse different applications that wear

down statistic information [1]. The wide

adoption of Cassandra in massive

information applications is attributed to,

among different things, its scalable and

fault-tolerant peer-to-peer design, versatile

and versatile information model that

evolved from the massive table

information model, declarative and easy

Cassandra source language (CQL), and

really economical write and skim access

methods that change important massive

2 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

information applications to remain

perpetually on, scale to several

transactions per second, and handle node

and even entire information center failures

with ease. One among the largest

challenges that new comes face once

adopting Cassandra is information

modeling that has vital variations from

ancient information modeling approaches

employed in the past.

Traditional information

modelling methodology that is employed

in relative databases defines well-

established steps formed by decades of

info analysis. An info sty leer generally

follows the info schema design work-flow

to outline an abstract information model,

map it to a relative information model,

normalize relations, and apply numerous

optimizations to supply an economical

info schema with tables and indexes.

During this method, the primary focus is

placed on understanding and organizing

information into relations, minimizing

information redundancy and avoiding

information duplication. Queries play a

secondary role in schema style. Question

analysis is often omitted at the first style

stage thanks to the expressivity of the

structured source language (SQL) that

pronto supports relative joins, nested

queries, information aggregation, and

diverse different options that facilitate to

retrieve a desired set of keep information.

As a result, ancient information modeling

may be a strictly data-driven method,

wherever, information access patterns area

unit solely taken under consideration to

form further indexes and occasional

materialized views to optimize the

foremost of times dead queries.

In distinction, glorious principles utilized

in ancient information style cannot be

directly applied to information modeling

in Cassandra. First, the Cassandra

information model is intended to attain

superior write and browse performance for

a specific set of queries that an application

has to run. Information modeling for

Cassandra starts with application queries.

Thus, planning Cassandra tables supported

an abstract information model alone, while

not taking queries into thought, ends up in

either inefficient queries or queries that

cannot be supported by an information

model. Second, CQL does not support

several of the constructs that are common

in SQL, together with pricy table joins and

information aggregation. Instead,

economical Cassandra information schema

style depends on information nesting or

schema denormalization to modify

advanced queries to be answered by solely

accessing one table. It is common that

3 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

similar information is kept in multiple

Cassandra tables to support completely

different queries, which end up in

information duplication. Thus, the

standard philosophy of standardisation and

minimizing information redundancy is

very opposite to information modeling

techniques for Cassandra. To summarize,

ancient information style is

not appropriate for developing correct,

coupled with economical Cassandra

information models [2, 3].

THE CASSANDRA DATA MODEL

Table Model

The notion of a table in Cassandra is

completely different from the notion of a

table in an exceedingly electronic

information service. A CQL table

(hereafter brought up as a table) may be

viewed as a group of partitions that

contain rows with the same structure.

Every partition in an exceedingly table

encompasses a distinctive partition key

and every row in an exceedingly partition

could optionally have a singular cluster

key. Each key may be easy (one column)

or composite (multiple columns). The

mixture of a partition key and a cluster

key unambiguously identifies a row in an

exceedingly table and is termed a primary

key. Whereas, the partition key part of a

primary key's perpetually necessary, the

cluster key part is ex gratia [4, 5]. A table

with no cluster key will solely have single-

row partitions as a result of its primary

key's akin to its partition key and there is a

matched mapping between partitions and

rows. A table with a cluster key will have

multi-row partitions as a result of different

rows within the same partition have

different cluster keys. Rows in an

exceedingly multi-row partition area unit

perpetually ordered by cluster key values

in ascending (default) or declivitous order.

Query Model

Queries over tables square measure

expressed in CQL that has an SQL-like

syntax. Unlike SQL, CQL supports no

binary operations, like joins, and features

a variety of rules for question predicates

that guarantee potency and quantifiability:

• Only primary key columns may be

used in a query predicate.

• All partition key columns must be

restricted by values (i.e., equality

search).

• All, some, or none of the clustering

key columns can be used in a query

predicate.

• If a clustering key column is used in a

query predicate, then all clustering key

columns that precede this clustering

column in the primary key definition

must also be used in the predicate [6].

4 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

CONCEPTUAL DATA MODELING

AND APPLICATION WORKFLOW

MODELING

The first step within the projected

methodology adds a full new dimension to

information style, not seen within the

ancient relative approach. Planning a

Cassandra information schema needs not

solely understanding of the to-be-managed

knowledge, however, additionally

understanding of, however, a knowledge-

driven application has to access such data.

The previous is captured via an abstract

knowledge model, like associate entity-

relationship model. Specifically, we elect

to use Entity-Relationship Diagrams in

Chen’s notation for abstract knowledge

modeling as a result of this notation is

really technology-independent and not

tainted with any relative model options

[7]. The latter is captured via associate

application advancement diagram that

defines knowledge access patterns for

individual application tasks. Every access

pattern specifies what attributes to look

for, search on, order by, or do aggregation

on with a distributed counter. For

readability, during this paper, we tend to

use verbal descriptions of access patterns.

A lot of formally, access patterns will be

delineated as graph queries written in a

very language the same as ERQL [8–10].

LOGICAL DATA MODELING

The crux of the Cassandra data modeling

methodology is logical data modeling. It

takes a conceptual data model and maps it

to a logical data model based on queries

defined in an application workflow. A

logical data model corresponds to a

Cassandra database schema with table

schemas defining columns, primary,

partition, and clustering keys. We define

the query-driven conceptual-to-logical

data model mapping via data modeling

principles, mapping rules, and mapping

patterns.

Data Modeling Principles

The following four data modeling

principles provide a foundation for the

mapping of conceptual to logical data

models.

DMP1 (Know Your Data)

The first key to undefeated information

style knows the info that is captured with

an abstract information model. The

importance and energy needed for abstract

information modeling should not be

under-estimated. Entity, relationship,

associated attribute varieties on an ER

diagram not solely outline that information

items ought to be keep during a

information, however, additionally that

information properties, like entity sort and

5 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

relationship sort keys, ought to be

preserved and relied on to arrange

information properly.

Mapping Rules

Based on the above data modeling

principles, we define five mapping rules

that guide a query-driven transition from a

conceptual data model to a logical data

model.

MR1 (Entities and Relationships)

Entity and relationshiptypes map to tables,

while entities and relationships map to

table rows. Attribute types that describe

entities and relationshipsat the conceptual

level must be preserved as table columns

at the logical level. Violation of this rule

may lead to data loss.

MR2 (Equality Search Attributes)

Equality search attributes that are

employed in a question predicate map to

the prefix columns of a table primary key.

Such columns should embrace all partition

key columns and, optionally, one or

additional agglomeration key columns.

Violation of this rule might end in

inability to support question needs.

MR3 (Inequality Search Attributes)

A difference search attribute, that is

employed in an exceedingly question

predicate, maps to a table agglomeration

key column. Within the primary key

definition, a column that participates in

difference search should follow columns

that participate in equality search.

Violation of this rule might end in

inability to support question needs.

Mapping Patterns

Based on the above mapping rules, we

design mapping patterns that serve as the

basis for automating Cassandra database

schema design. Given a query and a

conceptual data model subgraph that is

relevant to the query, each mapping

pattern defines final table schema design

without the need to apply individual

mapping rules. While we define a number

of different mapping patterns, due to space

limitations, we only present one mapping

pattern and one example.

PHYSICAL DATA MODELING

The final step of our methodology is the

analysis and optimization of a logical data

model to produce a physical data model.

While the modeling principles, mapping

rules, and mapping patterns ensure a

correct and efficient logical schema, there

are additional efficiency concerns related

to database engine constraints or finite

cluster resources. A typical analysis of a

logical data model involves the estimation

6 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

of table partition sizes and data

duplication factors. Some of the common

optimization techniques include partition

splitting, inverted indexes, data

aggregation and concurrent data access

optimizations.

CONCLUSION

In this paper, we tend to introduce a

rigorous query-driven knowledge

modeling methodology for Apache

prophetess. Our methodology was shown

to be drastically completely different from

the standard relative knowledge modeling

approach in a very variety of the way, like

query-driven schema style, knowledge

nesting and knowledge duplication. We

tend to detailed on the basic knowledge

modeling principles for prophetess, and

outlined mapping rules and mapping

patterns to transition from technology-

independent abstract knowledge models to

Cassandra-specific logical knowledge

models. We tend to additionally explain

the role of physical knowledge modeling

and planned a completely unique mental

image technique, known as Chebotko

Diagrams, which might be accustomed

capture advanced logical and physical

knowledge models. Finally, we tend to

bestow a strong knowledge modeling tool,

called KDM that automates a number of

the foremost complex, fallible, and long

knowledge modeling tasks, as well as

conceptual-to-logical mapping, logical-to-

physical mapping, and CQL generation.

REFERENCES

1. Apache Cassandra Project,

http://cassandra.apache.org/.

2. Planet Cassandra,

http://http://planetcassandra.org/.

3. Companies that use Cassandra,

http://planetcassandra.org/companies/.

4. A. Lakshman, P. Malik.

Cassandra: a decentralized structured

storage system.Operating Sys. Review.

2010; 44(2):35–40P.

5. F. Chang, J. Dean, S. Ghemawat,

et al. Bigtable: A distributed storage

system for structured data.ACM

Transactions onComputer Systems.

2008; 26(2).

6. E. F. Codd. A relational model of

data for large shared data banks.

Commun. ACM, 2008; 13(6):377–

387p.

7. Further normalization of the data

base relational model.IBMResearch

Report, San Jose, California; 1971.

8. P. P. Chen. The entity-relationship

model-toward a unified view of data.

ACM Trans. Database Syst. 1976;

1(1):9–36p.

9. DataStax Cassandra Training

7 Page 1-7 © MAT Journals 2016. All Rights Reserved

Journal of Web Development and Web Designing

Volume 1 Issue 3

Curriculum,

http://www.datastax.com/what-we-

offer/products-

services/training/apache-cassandra-

data-modeling/.

10. Cassandra Query Language,

https://cassandra.apache.org/doc/cql3/

CQL.html.

