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Abstract 

The main objective is to provide the system robustness and improved overall performance 

under significant model mismatches. In this a novel engineering oriented control system 

design methods for multivariable processes is presented. By employing the concepts of 

energy transmission ratio and effective relative gain, an Equivalent and Effective transfer 

function matrices for closed loop control system can be obtained. Consequently, the 

decentralized controllers can be independently designed by employing the single loop 

tuning techniques. These two design methods provide simple, straight forward and easy 

approaches for better computation. The real time experimentation carried out for the 

lower order MIMO process using VUDAQ-100 adds on card. The designed decentralized 

controllers are applied and the performances of both the methods have been analyzed.      

 

Keywords: Effective relative gain, energy transmission ratio, equivalent, effective transfer 

function, MIMO processes 

 

INTRODUCTION 

Multi Input Multi Output processes are 

more difficult to deal compared to their 

Single Input Single Output counterparts due 

to the existence of interactions input and 

output variables. This topic has drawn a lot 

of research interests and many multivariable 

control approaches have been proposed. 

Among them, Model predictive control 

(MPC) has emerged as one of the most 

popular technique in process control 

industry [1, 2]. However, the computational 

complexity in presence of logical functions 

and mode switching make it more suitable 

on a higher level of the control system 

architecture to provide set points for 

regulation loops, while the PI/PID based 

control is still the dominant technique used 

at the lower level of the control systems. 

Most of the process control industries are 

using PI/PID type control loops. This is 

mainly attributed to its effectiveness and 

relatively simple structure, which can be 

easily understood and implemented in 

practice. Consequently, the research on PID 

control algorithm development and their 

applications is still a very active area; many 

formulae have been derived to tune the PID 

controllers over the years [3, 4]. 

 

Due to the high product quality and energy 

integration requirements, most of modern 

industry processes, however, are Multi-Input 

Multi-Output (MIMO) processes. For easier 

field implementation, it is desirable to apply 

well established single loop PID tuning 

principles to these MIMO processes. 

However, compared with Single-Input 

Single Multi-Output (SISO) counterparts, 

MIMO systems are more difficult to control 

due to the existence of interactions between 

input and output variables. Adjusting 

controller parameters of one loop affects the 

performance of the others, sometimes to the 

extent of destabilizing the entire system. To 

ensure stability, many industrial 

decentralized controllers are tuned loosely, 

which causes inefficient operation and 
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higher energy costs [5, 6]. The equivalent 

transfer function can effectively 

approximate the dynamic interactions 

among loops. Consequently, the design 

of decentralized controller for MIMO 

processes can be converted to the design 

of single loop controllers. The method is 

simple, straightforward, easy to 

understand and implement.  Several 

multivariable industrial processes with 

different interaction characteristics are 

employed to demonstrate the 

effectiveness and simplicity of the design 

method compared with the existing 

methods [7, 8]. 

 

PRELIMINARIES  

An open loop stable multivariable 

system is considered with n inputs and n 

outputs, where     ri, i = 1,2,. . . , n ,  are 

the reference inputs; ui, i = 1,2,. . . , n ,  

are the manipulated variables;              

yi, i = 1,2,. . . , n ,  are the system outputs, 

Fig. 1: Closed-Loop Multivariable Control System. 

 

The process transfer function matrix G(s) 

and decentralized controller matrix 

Gc(s) with compatible dimensions are 

expressed by  
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Let )()( 0  jgKjg ijijji  , 

Where kij and )(0 jgij are steady state 

gain and normalized transfer function of 

,1)(..)( 00  jgeijg ijij  respectively. The 

interaction among individual loop is 

described by ERGA, the main result of 

ERGA is summarized as follows. Define 

eij of a particular transfer function as  


ω

0

0

ijijijij dω(jωjgcke  

where c,ij for ri,j =1,2, ...,n are the 

critical frequency of the transfer 

function gij (j) and || is the absolute 

value of . In order to calculate eij, the 

critical frequency can be defined in two 

ways: 
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1. ijc, = ijB,  where ijB,  for i,j = 

1,2,. . . ,n is the band width of the 

transfer function g 0

ij (j ) and 

determined by the frequency where 

the magnitude plot of frequency 

response reduced to 0.707 time, i.e.,  

.)0(707.0)( . ijijBij gjg   

2. ijc,  =  iju , , where iju ,  for i,j = 

1,2,...,n is the ultimate frequency of 

the transfer function )(0 jgij  and 

determined by the frequency where 

the phase plot of frequency response 

across -, i.e., 

Express the energy transmission ratio 

array as  
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 To simplify the calculation the 

effective energy transmission ratio array 

is given as:  

 E = G (0)  ,  

 Where the operator  is the Hadamard 

product,  
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are the steady state gain array and the 

critical frequency array, respectively. 

Since eij is an indication of energy 

transmission ratio for loop yi-uj, the 

bigger the eij value is, the more dominant 

of the loop will be. 

 

The effective relative gain,  ij, between 

output variable yi and input variable uj is 

define as the ratio of two effective 

energy transmission ratio :   

ij = 


ij

ij

e

e
    (1) 

When the effective relative gains are 

calculated for all the input/output 

combinations of a multivariable process, 

it results in an array, ERGA, which can 

be calculated by 
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The ERGA is used to determine the best 

variable paring. Suppose that the best loop 

configuration has been determined and the 

best pair is diagonally placed in the 

transfer function matrix. Similar to the 

open loop gain, we let the effective energy 

transmission ratio, ijê , when all other loops 

are closed be, ijê (0) = ijĝ (0) iju ,ω̂  i,j 

=1,2,...,n, where ijĝ  and iju ,ω̂ are the steady 

state gain and ultimate frequency between 

output variable yi and input variable uj 

when all other loops are closed, 

respectively. Then, from Eq. (1) 

ijĝ (0) 
iju ,ω̂ = 

ij

ijuijg



 ,)0(    (2) 

By the definition of RGA, we have 

ijĝ (0) = 
ij

ijg



)0(     (3) 

Where ij is the relative gain.  

 Substitute Eq. (3) into (2) and rearrange to 

result 

ij

ij




= 

iju,

iju,

ω̂

ω
  

,ij    (4) 

 

where ij  represents the critical frequency 

change of loop i-j when other loops are 

closed, defined as relative critical 

frequency. When the relative frequencies 

are calculated for all the input/output 

combinations of a multivariable process, it 

results in an array, i.e., relative frequency 

array (RFA). 
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We can let the ETF have the same 

structures as the corresponding open loop 

transfer functions but with different 

parameters  

iiĝ  (s) = 
iiĝ (0) r

iig (s) e
- ,

ˆ sd ii
  

(5)  

and iid̂  is the time delay of the ETF. 

iid̂ can be determined from Eq (4). 

iid̂ 


iju,

iju,

ω

ω
d ii = ii d ii    (6) 

This is the practical formula which will be 

used to derive the Equivalent and Effective 

transfer functions.   

 

DECENTRALLIZED CONTROLLER 

DESIGN APPROACHES  

Without loss of generality, we assume that 

each main loop, i.e., diagonal element in the 

transfer function matrix is represented by a 

second order plus dead time (SOPDT) 

model, which can be used to describe most 

of the industrial processes [9, 10]. 

 

The PID controller of each loop is supposed 

of the following standard form. 
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By this formulation, the gain and phase 

margin are interrelated to each other, some 

possible gain and phase margin selections 

are given in Table 1.  

 

Table 1: Typical Gain and Phase Margin 

Values. 

im,  /4 /3 3/8 2/5 

Am,i 2 3 4 5 

 

Equivalent Transfer Function Method   

Each controller can thus be independently 

designed by single loop approaches based 

on the corresponding diagonal transfer 

functions.  The equivalent transfer function 

can be represented by:  
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based on the Eq. (3) the PID parameters 

are given by  
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In addition, the control performance may 

not be met well for some high dimensional 

systems since a fixed PI/PD structure is 

adopted.  

 

The design of full dimensional PI/PD 

controller consists of two parts. 

1) Off-diagonal controllers: The main task 

of the off-diagonal controllers is to 

minimize the interactions among loops.  

2) Diagonal controllers: The diagonal 

controllers are to provide the desired 

performance of the closed loop control 

system.  
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For off-diagonal elements, according to Eq. 

(1)  

ssgsg
sg

ssg jijic

jic

jic /1)(ˆ)(
)(ˆ

1
)( ,

,

,       (10) 

Image that )(ˆ)(, sgsg ijjic is the forward 

transfer function of an artificial closed 

loop control system, the control 

object ssgsg ijjic /1)(ˆ)(,  , is to obtain an 

ideal control for this loop.  However, since 

the perfect control cannot be realized in 

practice, we use the gain and phase 

margins approach to design the controller. 

 

Effective Transfer Function Method 

The Effective transfer function is 

represented as: 

diis
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For the four different combinations of ii 

and ii, )(ĝ ij s may take different modes 

are shown in Table 2.  

Case 1: ii < 1, ii < 1 

Case 2: ii < 1, ii > 1 

Case 3: ii > 1, ii < 1 

Case 4: ii > 1, ii > 1 

The corresponding PID parameters are 

given by  
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Table 2: Decentralized PID Controller Design. 
Mode ĝii (s) kp,ii ki,ii kd,ii 
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SYSTEM DESCRIPTION AND REAL 

TIME EXPERIMENTATION 

The dynamic non-linear process 

considered under study is an interacting 

two tank system shown in Figure 1. The 

level of tank 1 and tank 2 are chosen as h1, 

h2. The manipulated variables are chosen 

as inflow of tank 1 (fin 1) and inflow tank 

2 (fin 2). 
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 Fig. 2: Two Tank Interacting System. 

 

The material balance for the two tank 

system yields the following equations and 

the steady state operating data of the two 

tank system are given in Table 3.  

 

Table 3: Steady State Operating Data of 

Two Tank System. 
Area of the tank AT 0.0154m2 

Constant Outflow 

coefficient (C1) 
1 

Constant Outflow 

Coefficient (C2) 
0.8 

Acceleration due to 

gravity(g) 
9.80m/sec2 

 

T

21p1

T

11

A

)h2g(hSC

A

fin

dt

dh 
   (13)  

T

21p12

A

)h2g(hSC

dt

dh 
    (14) 

Where    

C1, C2   constant flow coefficient 

Sp             cross section of the connecting 

pipe 

g         acceleration due to gravity 

AT           Area of the tank 

 

Determination of Model  

The steady state of the two tanks is 50ml. 

After reaching the level set point change 

of 10ml is given to tank 1 the 

corresponding tank 1 and tank +2 

responses have taken, similarly the same 

set point change given to tank 2 the 

responses have taken and shown in 

Figures 3 and 4. 

 
Fig. 3: Change in Inflow of 10ml /sec given to Tank - 1 at 2,000 (sec). 
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Fig. 4: Change in Inflow of  10ml/sec given to Tank - 2 at 2,000 (sec). 

 

The determined real time process is 

given below  
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where 

 = Relative gain array 

 = Critical frequency array 

 = Effective relative gain array 
 =  Relative frequency array  

 

Equivalent Transfer Function Method 

To validate the time delays of the 

transfer function the original time delays 

are to be calculated 
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Effective Transfer Function Method 

Following ERGA indicate diagonal 

pairing, i.e., 1-1/2-2. As 1λ ii  and ,1γ ii  

referring Table 2 the proposed method 

equivalent process for two loop are 

calculated as se 40

160s

2.5 


 and se 5.15

1127.5s

3.3 


 

respectively. For the gain and phase 

margins of 2 and /4,  

 

The real time results for Equivalent and 

Effective transfer function methods of 

servo and regulatory responses with set 

point change given to both tank-1 and 

tank -2 are shown in Figures 5–8.    
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Fig. 5: Servo and Regulatory Response of 

Equivalent Transfer Function Method for 

a Set Point Change from 33cm to 38cm 

given at t=2,000 (sec).  
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SETPOINT CHANGE GIVEN TO TANK2

0

10

20

30

40

50

60

0 1000 2000 3000 4000
Time(sec)

L
e
v
e
l(
c
m

)

TANK1

TANK2

 
Fig. 6: Servo and Regulatory Response of 

Equivalent Transfer Function Method for 

a Set Point Change from 28cm to 32cm 

given at t=2,000 (sec). 
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Fig. 7: Servo and Regulatory Response of 

Effective Transfer Function Method for a 

Set Point Change from 33cm to 38cm 

given at t=2,000 (sec). 
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Fig. 8: Servo and Regulatory Response of 

Effective Transfer Function Method for a 

Set Point Change from 28cm to 32cm 

given at t=2,000 (sec). 

 

Table 4: Comparative Performances of 

Two Methods. 
S. 

No. 
Parameters 

Loop 1  Loop 2  

ETF1  ETF2  ETF1 ETF2  

1 Settling 

Time (sec) 

2800 3800 2500 3000 

2 Peak Time 

(sec) 

2100 2200 2100 2300 

3 Peak Over 

Shoot (%) 

42 50 44 49 

4 Integral 

Square 

Error  

1.134 1.543 1.025 1.678 

 

CONCLUSION 

This paper presents novel methods to 

construct Equivalent and Effective 

transfer function models for 

decentralized control system design of 

multivariable interactive processes. The 

simplicity and effectiveness of the 

models is based on the energy   

transmission   ratio   of each   individual   

transfer function which provides 

necessary information of gain and 

frequency changes when all other loops 

are closed. Consequently, the 

decentralized controllers can be obtained 

by simply using single loop design 

approaches. 

 

The real time results for 2x2 processes 

shows that the Equivalent Transfer 

Function method provides overall better 

performance and provides the advantage 

of robustness it can still work with 

satisfactory performance even under 

significant model mismatches  compared 

to Effective Transfer Function method. 

The Equivalent Transfer Function 

method even more significant when 

applied to higher dimensional processes 

with complicated interaction modes. 
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