

1 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Characterization of File Memory Compiler

1
Dr Gayathri S,

2
Sahanashree H N

Department of E & C

Sri Jayachamarajendra College Of Engineering

Mysuru, Karnataka

Email:
1
sgmurthy_65@sjce.ac.in,

2
sahananagaraju23@gmail.com

Abstract

As the usage of hand held devices is increasing rapidly, it is a serious requirement to design

the SoC with much smaller size. Majority of the area on the SoC is occupied by the memories

used like RAM, Cache etc. It is required to reduce the size of these memories on the SoC.

Also as these SoC run on batteries such memories must consume very less power. So the

requirement is to design high density embedded memories with less in area, with less power

consumption and meeting the designer timing requirements like access time, setup and hold

time constraints. The main aim of the proposed work is, once the design is done, the memory

compiler need to be characterized whether it is meeting the design requirements for the given

instance and given process, voltage and temperature corners and to get the memory timing

and power information in datasheet and liberty formats.

Keywords: Memory; process; Voltage ;temperature; liberty format

INTRODUCTION

In the contemporary world, with the

requirement of portable and handheld

devices is increasing, designing such small

SoC’ s keeping the design requirements

like smaller area, lesser power

consumption and higher speeds of

operation has become a challenging task.

In addition, most of the SoC space is

occupied with the memories like Caches,

RAMs, TCAMs, and ROMs etc.., so

designing these memories with high

density is the main design challenge.

Also, characterizing the designed memory

and developing view which are used in

simulators is also a major challenge. With

the increasing number of memory devices,

the performance and power consumption

of the complete SoC is mainly depends on

these memory devices. So in order to

design high quality SoC, accurate models

of these embedded memories are required.

Existing methods are either time

consuming or less accurate. Hence an

efficient and robust characterization

method has to be developed to effectively

model these embedded memories.

BACKGROUND

Embedded Memories

Depending on the requirement and usage

different memories are used at different

levels on a SoC. Available options are

Register Files, SRAM, CAM etc.., These

memories play a vital role on the overall

performance of the SoC. These memories

are used depending on the requirement and

are divided in to three categories 1) Serial

Access Memories 2) Random Access

Memories 3) Content Access Memories.

Random Access Memory is defined as the

memory whose access time is independent

of the address location. Whereas it is quite

opposite in Serial Access Memory, in

which the data stored is accessed in serial

fashion.

In Content Access Memory, the data is

accessed depending on the type of data

stored in the memory. Random Access

Memories are further divided into

2 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Dynamic Random Access Memories and

Static Random Access Memories. DRAMs

are used as physical memories in the

system level where as SRAMs are used as

low level caches. This is because DRAMs

design uses less transistor count when

compared to the SRAM. But DRAMs use

a capacitor for storing the data which need

frequent refresh cycles which makes it

slower than SRAM and also because of the

usage of capacitors, leakage current is

more in DRAMs when compared to

SRAMs.

With the increase in technology nodes, the

size of memories depends on their usage at

different levels on the SoC. Depending on

the requirement in performance and cost,

different levels of memories can be

incorporated in a SoC. To get the better

performance, low level caches are to be

used which is less in size and more costly.

Higher levels are more in capacity, but far

from the processor and also less in cost.

Register Files and SRAMs come into

Level 1, Level 2, and Level 3. For the

main memory DRAMs are used and or

Storage SSD or Disk storage is used.

The Lower level caches are accessed

frequently and have to work at the

processor frequency. So the speed of

operation of these memories has to be very

high and so their power consumption must

be as low as possible to reduce the overall

power consumption. The major difference

in SRAM and Register File is the storage

capacity. Usually Register Files are of very

small size and are placed closer to the

processor which makes them operate at

high frequencies.

Compiler Flow

Memory compiler can be written using

high level languages like C, C++, Perl

etc.., these programming tools helps in

using the designed leaf cells of schematic

and layout to generate a full instance

complete schematic and its layout. For

getting the full instance schematic

Netlister is used and for generating the full

instance Layout Tiler is used. When

generating memory instances using

memory compiler, there are many input

files which are to be given prior to

memory instance generation.

Process, Voltage and Temperature

Information, Memory cuts defining the

size of memory, Technology Files, Control

and Configuration Files, Template Files,

Physical cell Schematics, Physical cell

Layouts Characterized data for predefined

instances, Programing tools like Tiler and

Netlister. Process, Voltage and

Temperature (PVT) information is used to

run the simulations at the required

conditions. This includes the best and

worst conditions.

Technology files contain the information

of the technology nodes and device

models. Certain views like liberty files,

datasheet files, LEF files, Verilog models

etc.., When the compiler is run it uses all

the predefined data, launches the

simulations, runs the commands, creates

the directory structure as per requirement,

generates the full instance schematics and

layouts using the leaf cells, and generates

the Synopsys liberty files, datasheet files

and Verilog views form the templates

given as inputs.

3 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Fig1. Compiler Design Flow

COMPILER FLOW

CHARACTERIZATION

Memory characterization is of increasing

concern in SoC designing which require

accurate and efficient models at all stages

of design. Compounding this problem are

the number and magnitude of the

challenges faced. The number of memory

instances per chip is increasing rapidly,

with some forecasts pointing to greater

than 90% of the die area being taken up by

memories and other large macros within 5

years.

In addition, to support the full range of

process, voltage and temperature corners

(PVTs) and the sensitivity to process

variation, the number of characterization

runs and the number of data points per

characterization run is growing

exponentially. In general there are two

approaches in characterizing full range of

memory compiler. One is Full Instance

based Characterization and the other is

using the Critical Path circuit

Characterization. In this full instance

based approach, the entire memory is

treated as black box which is simulated

using high speed simulating tools like Fast

Spice.

The main advantage of this approach is

that we get the good power and timing

models. The problem is the requirement of

more simulator licenses so that simulations

can be run on multiple machines. Also

these Fast spice simulators are less

accurate than True Spice simulators. One

other drawback for this method is that it

doesn’t work well for generating some of

the newer model formats such as noise

models and cannot be scaled to generate

process variation models needed for

statistical static timing analysis. The main

problem comes in the simulation of

memory block and in extracting the timing

and power values of the memory.

4 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

The main reason is, to simulate a whole

memory block and get timings it takes lot

of time. For example for a memory block

of size 1024x256, in order to get timing

values if we simulate at each corner and

assuming that each corner takes 5m(best

case) of simulation time on an average and

100 such simulations can be run in

parallel, then it takes 9 days approximately

to simulate at all corners. At the end, if

there is any modification in the design then

simulation has to be done again, which

again takes lot of time. So this method is

not used at the development phase of

memory compiler.

The other approach is to do develop a

critical path which is considered the worst

path taken by the signals in the memory

instance. Once the critical path is

identified, remaining part of the circuit is

replaced with load and is simulated with

True Spice simulators which give accurate

results. These critical paths can either be

generated by automated tools or can be

designed by the designers. With the latest

STA tools available, it is now possible to

time not only the control logic of a

memory block, but also paths through the

memory core array (i.e. bit-column,

wordline, column mux, sense amp, and so

on).

This results is an improvement in design

turn-around-time, verification coverage,

accuracy (within ±5%), and productivity

for designs with embedded memories. It

does not require netlist reduction

techniques as commonly practiced in the

dynamic simulation approach. A major

benefit of using the STA approach is that

there are no vectors needed in performing

timing analysis. This alone saves tedious

verification planning and processing time

and eliminates the potential of human error

in generating the stimulus for the dynamic

simulations. But in the characterization

done in this project is done by writing the

stimuli and measurements manually and

the critical path is designed by the

designers. No tools are used in automating

the flow. Below figure shows the flow

which is followed in characterizing the

memory compilers.

As the characterization is done for the

whole compiler range, critical path

modeled should be generic and should fit

for any range of memory instance with in

the compiler range. As the compiler has a

range of minimum 16bit to maximum of

256kb, the architecture changes for

memory instances depending on their size.

All the possible architectures are to be

modeled such that this becomes user

defined parameter so that user can choose

what architecture is needed based on their

requirements like area, timing and power

constraints.

Fig 2. Characterization Flow

5 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Finally, complete content and

organizational editing before formatting.

Please take note of the following items

when proofreading spelling and grammar:

Characterization Of 8x8 Memory

Instance

For simple understanding of how a

memory instance is characterized, an 8x8

memory instance is taken and

characterization is done as it takes less

time for simulations. 8x8 implies 8 words

and each having 8 bits all together a

memory of 64bit size.

The same procedure is done for all the

memory instances over the compiler range.

For proper characterization, initially the

functionality of the memory instance has

to be verified. For that we have to create a

stimuli for functionality verification such

as Read Write operation, Scan chain,

various power modes etc.., once the

functionality is verified the same stimuli

can be used to characterize the memory

instance.

Define abbreviations and acronyms the

first time they are used in the text, even

after they have been defined in the

abstract. Abbreviations such as IEEE, SI,

MKS, CGS, sc, dc, and rms do not have to

be defined. Do not use abbreviations in the

title or heads unless they are unavoidable.

Stimuli for read/write functionalty

As the functionality and characterization

can be done at the same time, single

stimuli is written for both. For effective

characterization of memory instance, it has

to be done in minimum number of cycles

and all the possible toggling has to be

identified. To do this the stimuli is written

in such a way that the address locations are

chosen at near and far end of the memory

instance. Also the data input must be in

such a way that maximum number of

toggling occurs at the output port and it

will make sure, that all cases are verified.

Since 8x8 memory instance is chosen, the

address locations which are accessed are 0

and 7.

Read enable and write enable signals are

also toggled each cycle. Care should be

taken such that both read operation and

write operation should not be done at the

same location. All together we have to

generate the stimuli for the following input

signals for read/write operations. Read

Address, Write address, read enable, Write

enable, Read Clock, Write Clock.

Depending on the requirement other input

stimuli are applied to the memory instance.

As an example the stimuli for 2 cycles is

given as below. But for verifying all the

toggling cases writing 0->1, 1->0 ,

toggling 1-> 0->1 at locations near and far,

at least we need a minimum of 8 clock

cycles. The stimuli which is written is

spice compatible simulated using XA

simulator.

Measurements

Setup and hold measurements are taken

where the data is latched by either

master/slave latch. For data setup

measurement we take the maximum data

delay and minimum clock delay. The

difference of these two gives the setup

time of that particular signal. Below

waveform shows the data setup

measurements.

6 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Fig 3. Setup Time Measurement

In the same way will write the

measurements for hold time, access time,

cycle time, Pinpower etc.

Tools Used to Enable Compiler

In order to create a memory compiler all

the individually generated memory

instances must be made generic such that

depending on the user defined parameters

corresponding memory instance has to be

generated. Also, characterizing the whole

compiler space is an impossible task

because of which only certain memory

instances are simulated and the whole

compiler space is interpolated using these

results. Finally to generate the CAD views

like Datasheet view, Liberty view, Verilog

views certain tools are required to perform

these tasks without much human effort.

Some of the tools which are used in

memory compiler characterization are

mentioned below. View generator, post

processing full table. This view generator

helps in converting generic templates of

simulation files to memory instances of

user defined size and runs at the specified

voltage, process and temperature. Also in

creating the CAD views, initially

templates for Datasheet and Liberty are

written using this view generator language

which is then used to generate the CAD

view for any memory instance thus

enabling the memory compiler. Below are

some examples how view generator works

is given below.

Genview –v template –o output –t

char_table –D user_def_var –cc

calculation_file – log log

Template file is the generic file which is

parsed by the view generator tool. While

parsing the template file, normal text lines

are as it is printed to the output file

whereas the words which are tagged with

view generator identifier are replaced with

user defined variables. Characterization

table contains all the data of simulated

timing and power information. When the

particular index is pointed, it is picked up

directly from the table, else an

interpolation is performed based on the

user option and value is returned.

The idea of memory compiler is to use the

simulated data and use interpolation to

cover the entire compiler space. This

interpolation is done by the view generator

7 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

tool. The available data is to be written in

specific format so that the tool can

understand. In general it is a 2 dimensional

array of data. Below figure shows a table

representation where x denotes data

presence and o denotes an empty data.

Fig 4. General Matrix of Interpolation

Since the table contains number of

parameters of interest it is difficult to

represent the calculated data in the above

mentioned format. So instead change it to

one dimension and add different

parameters in the other direction. The

format is as shown. TABLE tbl (i1, i2)
 i1 2, 2, 2, 2, 1, 1, 1, 1

 i2 1, 2, 3, 4, 1, 2, 3, 4

 O1 12, 2, 2, 10, 12, 2, 2, 10

 O2 3, 5, 7, 10, 3, 5, 7, 10

 O3 10, 1, 22, 9, 10, 1, 22, 9

For a designed memory instance, there is

possibility of applying different input

slopes, with different clock slews for

different output loads. Each of these

possibilities impact the performance of the

memory instance. So the memory instance

has to be analyzed with all such possible

cases. Doing this for the whole compiler

range is an impossible task. This impact is

done by using the post processing tool.

Post processing calculates the impact of

clock slew, input pin slew and load

variations which are pre-defined as inputs

at the beginning of the char-flow. In the

post processing file, default load, slew

variations, and different slews and loads

for which impact has to be calculated is

given. When the post processing tool is

invoked back ground equation files are

executed in which the impact calculations

are written for the timing/power

parameters of interest.

TABLE GENERATION RESULTS

After all the post processing, the available

data have to be arranged in a specific

format such that it is understandable by the

view generator tool so that the

interpolation can be done properly. This

table has to be generated for each pvt

corner at which the memory instances are

generated. For this a fulltable generation

file has to be passed to the fulltable

generator tool which contains all the pvt

information and memory cuts and the data

units. Below shown the basic format in

which table generation is to be given as

input to the full table generator tool.

Fig 5. View Generation Table Format

The liberty and data sheet files are the

ASCII representation of timing and power

numbers of a designed memory instance.

These timing and power values are

obtained from the characterization of the

memory instances. When a memory

instance is obtained from the memory

compiler, it generates these liberty and

data sheet views along with the full tiled

netlist and layout design.

The characterized data in the CAD views

are either a direct output form the

characterized data or the interpolated using

the available data. These data has to be

written in industry specific format called

8 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

Liberty format. For this internal tool like

view generator and Perl are used for view

generation. A generic template is created

and is parsed using the view generator and

executed using perl to generate the

required views. For example a generic

liberty file template is shown below.

CONCLUSION

The behavior of the basic SRAM cells

were analyzed the latest technology nodes,

and their behavior like read noise margin,

hold and write noise margin were analyzed

with the variation of process, voltage and

temperature and their impact on the circuit

behavior is identified. Further

Characterization for the compiler space

was done effectively. This characterization

methodology reduced the number of

memory instances that are to be simulated.

Also the bank delta methodology

effectively matched with the actual

simulated results.Authors and Affiliations.

During the characterization process, it

leaves with huge data base. For handling

such a huge database automation is done at

different levels like verification, stimuli

creations and plugging in the extracted

netlist files to the critical path. This

reduced the validation time to a great

extent. This characterization methodology

can be extended even for power

characterization, and also automation can

be done for measurements such that it can

be combined with the tight/stimuli

generation tool.

So at a stretch both stimuli and

measurements can be obtained within

minutes and run the simulation to get the

complete characteristics of the memory

instance.

Further, different interpolation methods

can be experimented and use the method

which gives the interpolated data with

minimum error so that further padding can

be avoided after characterization.

REFERENCES

1. Neil H. E. Weste and David Money

Harris,” CMOS VLSI Design A

Circuits and Systems Perspective,”

Edition 4, 2011.

2. Jay Abraham, “Improving SoC Design

Flows with Robust and Precise

Embedded Memory Models”, Silicon

Metrics Corp., Austin TX, USA,

Unpublished.

3. Liberty User Guides and Reference

Manual Suite Version 2013.03.

4. RAGHU KOPPANATHI, “8-PORT S-

RAM MEMORY CELL, WITH 8

WRITES OR 16 READS

SIMULTANEOUSLY”, M.S Thesis,

Osmania University, Andhra Pradesh,

2012.

5. Michael Cha Hamid Mahmoodi,

“Hspie Quick Start”, Nano-

Eelectronics & Computing Research

Lab school of Engg., San Fransisco

State University, 2011.

6. Bhavya Daya et al, “Synchronous 16x8

SRAM Design”, Electrical

Engineering Department, University of

Florida, unpublished.

7. Omar Shah, Shekhar Kapoor,

“Extraction Techniques for High-

performance, Highcapacity

Simulation”, Synopsys, 2009.

8. Charles Longway, YouPang Wei,

Automatic Memory IP

Characterization [online].

9. Chen Ming, Bai Na, “An Efficient and

Flexible Embedded Memory IP

Compiler,” in International Conference

on Cyber-Enabled Distributed

Computing and Knowledge Discover,

China, 2012.

10. Ken Hsieh, “The Benefits of Static

Timing Analysis Based Memory

Characterization,” white paper,

Synopsys, 2012.

11. Nai-Yin Sung and Tsung-Yi Wu, “A

Method of Embedded Memory Access

Time

9 Page 1-9 © MAT Journals 2018. All Rights Reserved

Journal of Analog and Digital Communications

Volume 4 Issue 2

12. Measurement,” Proceeding of

International Symposium on Quality

Electronic Design, pp.462-465, 2001

13. Mahmut E. Sinangil, “Ultra Dynamic

Voltage Scalable (U-DVS) SRAM

Design Considerations”, Dept.

Electrical Engineering and Computer

Science, Massachusetts Institute of

Technology, 2008.

14. C. Yen-Yu, et al., "Rapid and Accurate

Timing Modeling for SRAM

Compiler," in

15. Memory Technology, Design, and

Testing, 2009. MTDT '09. IEEE

International Workshop on, 2009, pp

73-76

16. Gilles Gasiot et al,”Experimental

characterization of process corners

effect on SRAM Alpha and Neutron

Soft Error Rates,” an IEEE journal pp

3C4.1-3C4.5.

17. Rachana Ekbote et al,”

Characterization and Simulation of

Different 7T SRAM Topologies,” an

IEEE journal on Engineering and

systems, 2012, pp 1-5.

18. H. N. Mishra, P. Y. Kumar, “Design,

Simulation and Characterization of

Memory Cell

19. Array for Low Power SRAM using 90

nm CMOS Technology,” Proceedings

of IEEE

20. International Conference on Power,

Control and Embedded Systems

(ICPCES), Allahabad, India,

November 29-December 1, 2010, pp.1-

3.

21. W. Zhongyuan, et al., "A high

performance embedded SRAM

compiler," in ASIC, 2003.

22. Proceedings. 5th International

Conference on, 2003, pp. 470-473

Vol.1

23. Zheng Guo et al, ”Large-Scale SRAM

Variability Characterization in 45 nm

CMOS,” an IEEE journal on Solid-

State Circuits vol-44, pp 3174-3192,

2009.

24. Vasudha Gupta, Mohab Anis,

“Statistical Design of the 6T SRAM

Bit Cell”, an IEEE journal on Circuits

and Systems, vol-57, pp 93-104.

25. Rajasekhar Keerthi, Chein-in Henry

Chen, “Stability and Static Noise

Margin Analysis of Low-Power

SRAM”, an IEEE International

Instrumentation and Measurement

Technology Conference, 2008.

26. A. Prakash, “Characterization of 90 nm

SOI SRAM Single Cell Failure by

Nano Probing Technique and TCAD

Simulation”, an IEEE conference on

Integrated circuits, pp 252254, 2007.

