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Abstract 

In this investigation is proposed a method for forecasting of changes in land use and land 

cover using satellite remote sensing techniques.  This study includes thefollowing twelve 

stages: 1) acquisition of remote sensing data, 2) collection of the reflectance image time 

series, 3) preliminary processing of reflectance image time series, 4) transformation of 

reflectance image to principal components, 5) modelling of PC1 statistical spatial prediction, 

6) calibration of forecasting models for the PC1 SSPM coefficients, 7) calibration of PC1 

SSPM, 8) validation of PC1 SSPM, 9) forecasting of PC1 SSPM coefficients and 10) 

calibration of CP1 SSPM with forecasted coefficients, 11) application of change detection 

techniques and 12) comparison of methods. Sixteensatellite images are acquired from the 

Landsat satellite in the period from 1986 to 2016. The study unit is the Pao river basin. The 

proposed method is a hybrid combination that includes three types of applied models that are 

based on time series of reflectance images in sequence as follows: the principal component 

analysis, the statistical spatial prediction models and forecasting models for time series. The 

current study proposes a method that contributes to introduce the temporal pattern of LULC 

changes captured by the statistical spatial prediction method coefficients and provides results 

characterized by a seasonality parameter; which is able to reproduce the spatio-temporal 

variation collected by the reception of the reflectance variable by satellite sensor. The 

statistics of error predictions indicate gradients of the predicted and observed function 

approximated to the unity as well as near to zero for the errors. The samples evaluated in the 

validation stage give correlation coefficient upper to 0.6; being a successful adjust between 

observed and predicted values. The forecasted changes in the Pao river basin for 2020 and 

20130 vary from: 5.54 to 8. 14%, 5.52 to 8. 14%. These changes are equivalent to those 

observed from 2000 and 2016 of 5.13% as well as from 1990 to 2016 of 7.05 %.   

 

Keywords: LULC changes forecasting method, remote sensing, Land Use/Land Cover, 

Change detection techniques 

 

INTRODUCTION 

The term land use refers to how the land is 

being used by human beings. Land cover 

refers to the biophysical materials found 

on the land (Jensen, 2009). Land use and 

land cover (LULC) changes may have an 

impact on the environment, ecosystem and 

socio-economic development in the region 

(Chen and Wang, 2010). In the 

environmental policy plans there is an 

increasing need for up-to-date and reliable 

information on land use and land cover 

environment (Stanners and Bourdeau 

1995). This information is essential for 

planning and implementing policies to 

optimize the use of natural resources and 

accommodate development whilst 

minimizing the impact on the 

environment. The detection and 

monitoring of change in LULC using 

satellite multi-spectral image data has been 

supported on several techniques for 

accomplishing change detection have been 

formulated, applied and evaluated 
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(Dewidar, 2004).  The change detection 

techniques are based on two discrete 

groups (Hussain et al., (2013); both of 

them using the image as unit of analysis. 

The first group uses the image pixel as 

fundamental unit of analysis, known as 

pixel-based. The second group is the 

object-based method, making image 

objects and then using them for further 

analysis. For example into the first group, 

the change vector technique has been 

applied by Thenkabail et al., (2005) to 

estimate the demand for water for 

irrigationin the Ganges and Indus river 

basins using 7-band MODIS land data for 

2001–2002.  Zhao et al., (2004)  compare 

three techniques for change detection in 

order to select the best technique to 

manage cultivated areas and make a 

sustainable utilization: 1) image ratioing, 

2) post-classification comparison and 3) 

Knowledge-based  The techniques that 

involve the maximum likelihood algorithm 

to achieve the LULC classification and the 

post-classification comparison of images, 

are applied by the following researchers:  

Dewidar (2004) assess possible future 

changes following construction of the 

international coastal road, which crosses 

the study area located in the northern part 

of the Nile delta, Egypt, by analyzing the 

LULC changes between 1984 and 1997.  

Onur et al, (2009) take decision about two 

conflicting interests in Kemer, Turkey: 

agricultural production and tourism 

activity, by analyzing the LULC changes 

from 1975 to 2003. Chen and Wang, 

(2010) determine the environmental 

impacts by the drastic LULC changes 

experimented since the commencement of 

the construction of the Three Gorges Dam 

in 1994. In the second group, Bontemps et 

al, (2012) apply the object-based change 

detection algorithm to monitor land cover 

over large areas using SPOT-

VEGETATION time series from 2000 to 

2008. Regarding to the forecasting 

method, the highest frequency of 

application is the Markovian chains 

analysis (Jianping et al., 2005; Yin et al., 

2007; Hadi et al., 2014; Kumar et al., 

2014; Han et al., 2015; Padonou et al., 

2017); which requires in order to generate 

the predictions at least two LUCL maps 

corresponding to date separated in time.  A 

second applied method is based on neural 

networks focused in multi-layer perceptron 

with a low frequency (Pijanowski et al., 

2002; Mishra et al., 2014). Both methods 

require a preview application of the 

supervised classification algorithms and 

post-classification comparison to obtain 

the LULC maps. 

 

The land use and land cover (LULC) 

change detection methods are applied on 

the Pao river basin, Venezuela in order to 

find out the possible influence caused by 

these changes on the operation of the three 

reservoirs that provide water for 

residential-industrial-commercial uses in 

three states in the north-region of the 

country in the period from 1986 to 2016. 

The Pao river basin is a study unit that is 

composed by the following LULC: 

agricultural, rangeland, urban, water, 

vegetation and degraded soil (Figure 1). 

The LULC forecasting method proposed is 

compared with three methods based on 

pixels; which have been applied to 

determine LULC: 1) image difference 

(Nelson, 1983), 2) image ratioing 

(Howarth and Wickware, 1981), principal 

components (Byrne et al., 1980).  In this 

study are included eleven images acquired 

from the Landsat satellite in the period 

between 1986 and 2016. The purpose is to 

create a method to forecast the LULC 

changes, finding the better approximation 

to the observed changes and predicting 

future changes in order to take decision to 

manage natural resources in a way that 

allowsto preserve its availability for the 

future human development. 

 

STUDY SITE 

The Bolivarian Republic of Venezuela is 

located in the American continent, north of 
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South America, in direct contact with the 

Caribbean Sea. It is located according to 

latitude in the northern hemisphere, 

between Ecuador and Tropic of Cancer, 

and according to the length in the Western 

hemisphere, with the following 

coordinates: 00°38'53" and 12°12´00" LN, 

59°47´50" and 73°22´38" LW. The 

Paoriver basin is located in the central-

north region of Venezuela.It covers a 

portion of area related to the total area of 

each of the three states as follows: 

Carabobo (1701.64 km
2
, 4 866.75 km

2
, 

34.96%), Cojedes (1316.78 km
2
, 13 

878.24 km
2
, 9.48%) and Guarico (0.123 

km
2
, 65 126.57 km

2
, 0.0018 %).The total 

area of the Pao river basin is  3018.54 km
2
; 

whose latitude and longitude varies 

between9°34‘ and 10°21‘, 67°46‘ and 

68°15‘, respectively(Figure 1). The 

elevations of the Pao river basin vary from 

1788 to 119 meters above sea level (masl). 

The elevations classified regarding to the 

occupied area in the Pao river basinare: 

119 – 339 masl (777.08 km
2
; 25.74%), 

339.01 – 599 masl (1483.57 km
2
; 49.14%), 

599.01 – 962 masl (597.44 km
2
, 19.79%) 

and 962.01 – 1 788 masl (160.43 km
2
; 

5.31%). This includes main river the 

fourteen identified as: 1) Chrigua, 2) Paito, 

3) Cabriales, 4) PiraPira, 5) San Pedro, 6) 

Caiman, 7) Caimancito, 8) Pao, 9) 

Aragüita, 11) Mucaria, 12) Pacaragua, 13) 

Gamelotal and 14) Palmar. The three water 

reservoirs are located in the Pao river basin 

indicated according to the level of 

classification of the sub-basin as follows: 

a) Guataparo (upper sub-basin integrated 

by river: 2), b) PaoCachinche 

(intermediate sub-basin integrated by 

rivers : 1, 2, 3, 4 and 5) and c) Pao La 

Balsa (Lower sub-basin integrated by 

rivers: 7, 8, 9, 10, 11, 12, 13 and 14) 

(Figure 1).These water reservoirs are a 

source of water supplyfor the land use 

developed in the three states, whose urban 

population is as follows: 1) Cojedes (265 

541 habitants), 2) Carabobo (2 208 188 

habitants) and 3) Aragua (1 557 151 

habitants) (Figure 1). The land cover / land 

use according to the U.S. Geological 

Survey Land-Use/ Land-Cover 

Classification System for use with remote 

sensor data (Anderson, 1976; Jensen, 

2009) arefive mainly: 1) urban,2) 

agricultural, 3) rangeland, 4) forestland 

and 5) water. The terrain slopes and its 

corresponding area vary in the following 

intervals: 0 – 15% (1 581.76 km
2
; 52.4%), 

15 – 47% (1 058 km
2
; 35.05%), > 47 % 

(378.56 km
2
; 12.5%) (Figure 1). 

 

METHODS 

The method proposed for the forecasting 

of changes inLULCusing satellite remote 

sensing techniques is described in 

thefollowing the twelve stages (Figure 2): 

1) acquisition of remote sensing data, 2) 

collection of the reflectance image time 

series, 3) preliminary processing of 

reflectance image time series, 4) 

transformation of reflectance image to 

principal components, 5) modelling of 

PC1 statistical spatial prediction, 6) 

calibration of forecasting models for the 

PC1 SSPM coefficients, 7) calibration of 

PC1 SSPM, 8) validation of PC1 SSPM, 

9) forecasting of PC1 SSPM coefficients 

and 10) calibration of CP1 SSPM with 

forecasted coefficients, 11) application of 

change detection techniques and 12) 

comparison of method. 

 

Acquisition of data 

Acquisition of remote sensing data 

The acquisition of remote sensing data is 

done from the following web site: 

https://earthexplorer.usgs.gov/; where the 

images from different satellites are 

available to access at no cost. The selected 

satellites are the group of Landsat 

satellites; using images from four of these: 

1) Landsat 4 (L4), Landsat 5 (L5), Landsat 

7 (L7) and Landsat 8 (L8); whose sensors 

are: L4 and L5: Thematic Mapper (TM), 

L7: Enhanced Thematic Mapper (ETM) 

and L8: Operational Land Imager (OLI); 

respectively. Sixteen Landsat images have 

https://earthexplorer.usgs.gov/
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been acquiredcorresponding to a single 

scene; where the Pao river basin is 

contained. The scene is identified under 

the world reference system according to 

the following raw and path: 005, 053, 

respectively. These images represent the 

LULC condition mainly during the dry 

season; which covers the months between 

December and March of each year. The 

temporal series of images from the four 

Landsat satellite can be grouped as 

follows: 1) L4TM (1987, 1988, and 1989), 

2) L5TM (1986, 1990, 1991, 1996, 1997, 

1998, 1999and 2001), 3) L7ETM (2000, 

2002, and 2003) and 4) L8OLI (2015, 

2016).The parameters of map projection 

according to the United State Geological 

Survey (USGS) are: a) Projection: 

Universal Transverse Mercator (UTM), b) 

Datum: World Geodetic System 1984 

(WGS84), c) UTM Zone: 19 N and e) 

Resample Method: Cubic Convolution. 

The image characteristics acquired 

according to each satellite are identified as 

follows (Table 1): a) the scene 

identification code, b) the acquisition date, 

c) the scene center time, d) the cloud 

coverage, e) the image quality, f) the angle 

of solar azimuth and g) the angle of solar 

zenith. In the Table 1, these can be 

observed as follows:  

LT50050531986351XXX03; 1986-12-17; 

14: 11: 28.3900750Z; 20.00%; 7; 

134.93319530 °; and 42.24871979 °.The 

criteria for selecting of the temporal series 

of Landsat images are: 1) the same season 

of each year, and 2) the lowest coverage 

of: clouds, aerosols and haze. The clouds 

and their associated shadows, aerosols and 

haze obstruct the ground view; causing 

atypical values in the reflectance 

observations through time. This can lead to 

confusion of the LULC change detection 

and the analysis of the reflectance trends. 

The dependence of the cloud free images 

restricts the sampling opportunities to the 

dry season in the tropics (Sano et al., 

2007). Images affected by clouds, aerosols 

and haze often contain a large number of 

free pixels that can be used. 

Collection of the imagetime series 

The available Landsat satellite imageswere 

collected in order to make the largest 

amount and the longest time series. Two 

time series have been achieved by taking 

the images from the dry season of each 

year during the period between 1986 and 

2003; whose seasonality is approximately 

one year. The two time series (TS)include 

the images of the following periods: First 

TS: from 1986 to1991, Second TSfrom 

1996 to 2003.  These two time series will 

be used to develop the forecast models for 

each one. 

 

Preliminary processing of image time 

series 

The preprocessing of the Landsat satellite 

data implies to apply the following 

absolute and relative corrections: 

geometric, radiometric, topographic and 

atmospheric. The correction algorithm 

application requires the band composition 

of each image using the ArcGIS V10.0 

computational tool. The spectral bands 

included in the composition depend on 

each Landsat satellite as it is indicated in 

Table 3; where it can be seen as an 

example that the spectral bands included in 

the Landsat 5TM vary in the solar and 

thermalreflective regions as follows: 

spectral band 1 (b1): 0.452-0.518 µm. 

spectral band 2 (b2): 0.528-0.609 µm. 

spectral band 3 (b3): 0.626-0.693 µm. 

spectral band 4 (b4): 0.776-0.904 µm. 

spectral band 5 (b5): 0.776-0.904 µm. 

spectral band 6 (b6): 10.45-12.42 µm. 

spectral band 7 (b7): 2.097-2.349 

µm.There are differences in the range of 

the spectral bandsbetween the Landsat 

5TM and Landsat 7ETM satellites 

regarding to Landsat 8OLI satellite. The 

composite bands of each image according 

to each satellite are (Table 3): L5TM (b1, 

b2, b3, b4, b5, b7), L7ETM (b1, b2, b3, 

b4, b5, b7) and L8OLI (b2, b3, b4, b5, b6, 

b7); excluding those spectral bands into 

the thermal region.  
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Transformation of reflectance image 

tothe principal components (PC) 

The reflectance image is transformed to 

the principal components (PC), 

mathematically based on ‗‗Principal Axis 

Transformation‖. Principal components 

analysis (PCA) is a statistical technique 

that transforms a multivariate data set 

consisting of intercorrelated variables into 

a data set consisting of variables that are 

uncorrelated linear combinations of the 

original variables(Lillesand et al.,2014). 

The transformed variables are referred to 

as principal components (PCs). PCs are 

chosen in such a way that the first PC 

expresses the maximum possible 

proportion of the variance in the original 

data set; subsequent PCs account for 

successively smaller proportions of the 

remaining variance (Ingebritsen and Lyon, 

1985).  In this study, the first principal 

component (PC1) is selected as the image 

that will be used to obtain the statistical 

spatial prediction model.  

 

Modelling of PC1 Statistical Spatial 

Prediction 

It will be applied models of statistical 

spatial prediction for estimating of the 

PC1. A spatial prediction model (SSPM) 

estimates the values of the target variable 

(z) at some new location s0; being a set of 

observations of a target variable z denoted 

as z(s1), z(s2),. . . , z(sn), where si = (xi, yi) 

is a location and xi and yi are the 

coordinates (primary locations) in 

geographical space and n is the number of 

observations. The geographical domain of 

interest (area, land surface, object) can be 

denoted as A. It defines inputs, outputsand 

the computational procedure to derive 

outputs based on the given inputs (Hengl, 

2007): 

𝑧  𝑠0 = 𝐸 𝑍 𝑧 𝑠𝑖  , 𝑞𝑘 𝑠0 , 𝛾 ℎ , 𝑠 𝜖 𝐴  
Where 𝑧 𝑠𝑖 is the input point dataset, 

𝑞𝑘 𝑠0 is the list of deterministic predictors 

and 𝛾 ℎ  is the covariance model defining 

the spatial autocorrelation structure. The 

type of SSPM used is the statistical model 

called Ordinary Krigging (OK); whose 

technique was developed by Krige (1951). 

The predictions are based on the model: 

𝑍 𝑠 = 𝜇 +  𝜀′ 𝑠 (1) 

Where 𝜇 is the constant stationary function 

(global mean) and 𝜀′ 𝑠 is the spatially 

correlated stochastic part of variation. The 

predictions are made as in 

Matheron (1963) and Gandin (1960) 

introduced to the analysis of point data is 

the derivation and plotting of the so-called 

semivariances — differences between the 

neighbouring values: 

𝛾 ℎ =
1

2
 𝐸   𝑧 𝑠𝑖 − 𝑧 𝑠𝑖 + ℎ   

2
 (2)  

where z(si) is the value of target variable 

at some sampled location and z(si +h) is 

the value of the neighbour at distance si + 

h. The semivariances versus their distances 

produce a standard experimental 

variogram.  From the experimental 

variogram, it can be fitted using some of 

the authorized variogram models, such as 

linear, spherical, exponential, circular, 

Gaussian, Bessel, power and similar 

(Isaaks and Srivastava, 1989; Goovaerts, 

1997). 

 

Forecasting of PC1 SSPM Coefficients 

The forecasting of PC1 SSPM coefficients 

is made using the models provided to 

forecast the future values; which include 

various types of exponential smoothers, 

trend models, and parametric models of 

type ―AutoRegressive, Integrated, Moving 

Average ―(ARIMA), among others; which 

can be consulted in Box et al., (1994) and 

Hamilton, (1994). Two time series of PC1 

SSPM coefficients have been used to 

adjust two forecasting models. The first 

time series corresponding to the period 

between 1986 and 1991 is used to calibrate 

the forecasting models and generate the 

time series of theforecasted PC1 SSPM 

coefficients in the period between 1992 

and 2003. The second time series 

corresponding to the period between 1996 

and 2003 is used to calibrate the 
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forecasting models and generate the time 

series of the forecasted PC1 SSPM 

coefficients in the period between 2004 

and 2017. The criterion to choose the time 

period to obtain the forecasted PC1 SSPM 

coefficients in each time series is to do a 

comparison between the forecasted CP1 

and the observed CP1 maps.   

 

Calibration of PC1 SSPM coefficients 

The calibration of the PC1 SSPM 

coefficients involves the choice of the 

forecasting model, whose error statistics 

between the observed and forecasted data 

are the lowest. Once the forecasting model 

has been selected, the PC1 SSPM 

coefficients are estimated for a future time. 

The statistic errors included are:  root 

mean squared error (RMSE), mean 

absolute error (MEA), mean error (ME). 

The forecasted PC1 SSPM coefficients are 

evaluated in the SSPM using the last CP1 

image integrating the available time series 

as the independent variable, then the error 

predictions between the forecasted and 

observed data are extracted by the 

following statistics: PRF: Predicted 

Regression function, ERF: Error 

Regression Function, SERF: Standardized 

Error Regression Function, PE: Prediction 

Errors.  

 

Validation of PC1 SSPM coefficients 

The validation of forecasting of PC1 

SSPM coefficientsgenerated fromeach 

time series comprised between 1986 and 

1991; as well as 1996 and 2003 is carried 

out by comparing a sample of values 

extracted from the forecasted PC1 map 

with a sample of values extracted from the 

observed PC1 map. The observed PC1 

map is obtained from the reflectance 

image acquired by the Landsat satellite. 

The observed periods for the validation of 

the forecasted results from the first and 

second series comprises between 1996 and 

2003, 2015 and 2016, respectively. The 

statistics that show the validation are: 

predicted regression function (PRF), 

correlation coefficient (CC), 

Determination Coefficient (R
2
), Adjusted 

Determination Coefficient (R
2
adjusted), 

Standard Error of Estimation (SEE), Mean 

Absolute Error (MAE), Durbin-Watson 

statistic (DW).  

 

Application of Change Detection 

Techniques 

The change detection techniques belong to 

two groups (Hussain et al., 2013): 1) pixel-

based and, 2) object-based. The methods 

applied in this study corresponding to the 

first group: 1) Direct comparison: image 

differencing and image ratioing, 2) 

Transformation from image: principal 

components analysis. 

 

Comparison of Results with 

Conventional Techniques 

The comparison of results is carried out 

between the methods of change detection 

to estimate the grade in which the 

forecasted PC1 predicts the changes 

theLULC classes in the Pao river basin. 

 

RESULTS 

Results of application of the 

transformation method of principal 

components (PC) 

The results of application of the 

transformation method of principal 

components expressed by the covariance 

matrix from the reflectance percentage 

image ofthe Pao river basin for 1986 are 

shown in the Table 3; where it can be 

observed that the covariance vectors of the 

principal components (PCs) are similar in 

the following two groups: First group:  

PC1, PC2 and PC3 and the Second group: 

PC4, PC5 and PC6. 

 

The results of transformation method of 

principal components expressed by the 

correlation matrix from the reflectance 

percentage in the Pao river basin image 

for1986 are shown in the Table 4; where it 

can be observed that the correlation 

vectors of the principal components (PC) 
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are similar in the following two groups: 

First group:  PC1, PC2 and PC3 and the 

Second group: PC4, PC5 and PC6.In the 

first group of PCs, the highest correlation 

corresponds to the spectral bands in the 

optical region varying between 0.96 and 1, 

the spectral bands in the infrared region 

are correlated with PCs varying  from 0.65 

to 0.86. Regarding to the second group of 

PCs, the correlation in the spectral bands 

in the optical region varies between 0.65 

and 0.91, the highest correlation in found 

in the spectral bands of the infrared region 

varying from 0.76 to 1. 

 

The results of transformation method of 

principal components expressed by the 

eigenvalues from the reflectance 

percentage images between 1986 and 2016 

in the Pao river basin are shown in Table 

5; where it can be observed that the 

variance of each PCs expressed as the 

eigenvalues takes the highest value in the 

PC1 by comparing with the rest of the 

PCs; which represents the greatest part of 

total population variance varying between 

80.63 and 91.94%.  As a sample, the 

eigenvalues and the percentage of variance 

in the PCs correspond to the reflectance 

image for 1986 are indicated as follows: 

PC1: 462.42, 87.1; PC2: 48.56, 9.15%; 

PC3: 17.24, 3.25%, PC4: 1.28, 0.24%, 

PC5: 1.13, 0.21% and PC6: 0.27, 0.05%, 

respectively. As a consequence, the PC1 is 

selected as the image to apply the 

modelling of statistical spatial prediction. 

 

Results of the modelling of PC1 

Statistical Spatial Prediction 

The results of the modelling of PC1 

statistical spatial prediction for the time 

series of images between: 1986 and 1991, 

1996 and 2003, 2015 and 2016 are shown 

in Tables 6, 7 and 8, respectively. In 

general, the variogram of each PC1 image 

have been adjusted to a number of lags 

equal to 5. The statistical spatial prediction 

model (SSPM) selected in all cases is the 

J-Bessel function. The components or 

coefficients of the SSPM expressed in the 

Tables 6, 7 and 8 by the general equation 

a*Nugget+b*J-Bessel(c, d) are identified 

as follows: 1) a: the nugget, 2) b: the 

partial sill, 3) c: the range, and 4) d: the 

parameter. As a sample, in the image of 

date: 1986-12-17, the CP1 SSPM is 

described by: 159.64*Nugget+31.758*J-

Bessel (7602, 5.7902); being the 

coefficients:  a: 159.64, b: 31.758, c: 7602 

and d: 5.7902. The gradients of the 

followinglinear functions vary between: 

predicted regression (PRF): 0.696 and 

0.911, error regression (ERF): -0.088 and -

0.303, standardized error regression 

(SERF): -0.00586 and -0.052. The sample 

size is: 3209460. The error predictions 

varying between: 1) Mean Error: -

0.000305 and 0.00184, 2) Root-Mean-

Square Error: 3.766 and 7.420, 3) Mean 

Standardized Error: -7.85e-005 and 

0.000225, 4) Root-Mean-Square 

Standardized Error: 0.4005 and 0.818, 5) 

Average Standard Error: 5.568 and 18.052. 

 

Results of calibration of forecasting 

models for the PC1 SSPM Coefficients  

The results of calibration of forecasting 

models for the PC1 SSPM Coefficients 

based on the time series between 1986 and 

1991, 1996 and 2003 are shown in Tables 

9 and 10; where it can be observed that the 

five models included for the forecasting of 

the four coefficients are: 1) ARIMA, 2) 

Linear Trend, 3) Simple exponential 

smoothing, 4) Brown's linear exponential 

smoothing, and 5) Brown's quadratic 

exponential smoothing. In general, the 

ARIMA model is represented by the 

parameters: (1,0,0) with constant; where 

the order of the no seasonal autoregressive 

term is equal to 1, the order of the no 

seasonal differencing is of zero, and the 

order of the no seasonal moving average 

term is of zero.  

 

Results of the error statistics by fitting 

the forecasting models to the PC1 SSPM 

coefficients 
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The error statistics by fitting the 

forecasting models to the PC1 SSPM 

coefficients based on the two time series 

between 1986 and 1991, and 1996 and 

2003 are shown in Tables 11 and 12; 

where it can be observed the three 

following error statistics:  1) RMSE: root 

mean squared error, 2) MAE: mean 

absolute error and 3) ME: mean error. In 

general, the four coefficients are estimated 

with the lower error by the A model 

corresponding to the ARIMA Model: 

(1,0,0) with constant. In the first time 

series, a: RMSE: 43.0168, MAE: 26.4774, 

ME:3.2464; b: RMSE: 149.069, MAE: 

104.798, ME:4.349; c: RMSE: 4306.73, 

MAE: 3113.61, ME:189.467; d: RMSE: 

3.84892, MAE: 2.67851, ME:-0.0371282. 

In the second time series, a: RMSE: 

71.3372, MAE: 46.1758, ME:-2.03837E-

12; b: RMSE: 174.613, MAE: 85.5275, 

ME:-38.578; c: RMSE: 7411.07, MAE: 

4401.36, ME:-18.0989; d: RMSE: 01972, 

MAE: 2.94246, ME:0.0740119. 
The two time series of the forecasted PC1 

SSPM coefficients from 1992 to 2030; and 

from 2004 to 2030 based on the two time 

series from 1986 to 1991, as well as from 

1996 to2003,respectively,are obtained 

through of the selected forecast models 

from the Tables 11 and 12.These 

forecasted coefficients are shown in Tables 

13 and 14.  In the first and second time 

series, the ARIMA(1,0,0)and Brown's 

linear exponential smoothing models are 

used to forecast the four coefficients 

associated to the PC1 SSPM, respectively. 

As an example, in the first time series, the 

forecasted PC1 SSPM coefficients for 

1996 are: a: 74.4782, b: 121.29, c: 3464.67 

and d:6.45658.In the second time series, 

the forecasted PC1 SSPM coefficients for 

2016 are: a: 108.75, b: 151.703, c: 3774.29 

and d:7.77191. 

 

Results of the calibration of the PC1 

SSPM  

The calibration of the PC1 SSPM with 

forecasted coefficients between 1996 and 

2003 are obtained based on the time series 

between 1986 and 1991 and indicated in 

Table 15.  In addition, it is included the 

calibration of the PC1 SSPM 

corresponding to 2016. The coefficients 

are applied using as independent variable 

to the PC1 image last in the time series 

corresponding to 1991.  The statistical 

spatial prediction model (SSPM) selected 

in all cases is the J-Bessel function. The 

components or coefficients of the SSPM 

expressed in the Table 15 by the general 

equation a*Nugget+b*J-Bessel(c, d) are 

identified as follows: 1) a: the nugget, 2) b: 

the partial sill, 3) c: the range, and 4) d: the 

parameter. As a sample, in the image of 

1996, the CP1 SSPM is described by: 

74.478*Nugget+121.29*J-

Bessel(3464.7,6.4566)); being the 

coefficients:  a: 74.478, b: 121.29, c: 

3464.7 and d: 6.4566. The forecasted 

gradients of the following linear functions 

vary as follows: predicted regression 

(PRF): 0.7824, error regression (ERF): -

0.2175, standardized error regression 

(SERF): -0.0263. The sample size is: 

3209460. The error predictions vary in the 

following ranges: 1) Mean Error: -0.00147 

and -0.000184, 2) Root-Mean-Square 

Error: 4.834 and 4.836, 3) Mean 

Standardized Error: -0.000174 and -

0.0001828, 4) Root-Mean-Square 

Standardized Error: 0.546 and 0.603, 5) 

Average Standard Error: 8.0106 and 8.843. 

 

The calibration of the PC1 SSPM with 

forecasted coefficients between 2015 and 

2016 are obtained based on the time series 

between 1996 and 2003 and indicated in 

Table 16. The coefficients are applied 

using as independent variable to the PC1 

image last in the time series corresponding 

to 2003.  The statistical spatial prediction 

model (SSPM) selected in all cases is the 

J-Bessel function. The components or 

coefficients of the SSPM expressed in the 

Table 16 by the general equation 

a*Nugget+b*J-Bessel(c, d) are identified 

as follows: 1) a: the nugget, 2) b: the 
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partial sill, 3) c: the range, and 4) d: the 

parameter. As a sample, in the image of 

date: 2016-01-18, the CP1 SSPM is 

described by: 108.11*Nugget+157.31*J-

Bessel (3791.7, 7.7866); being the 

coefficients:  a: 108.11, b: 157.31, c: 

3791.7 and d: 7.7866. The forecasted 

gradients of the following linear functions 

vary as follows: predicted regression 

(PRF): 0.8099, error regression (ERF): -

0.19003, standardized error regression 

(SERF): -0.01793. The sample size is: 

3209460. The error predictions varying 

between: 1) Mean Error: 0.000883, 2) 

Root-Mean-Square Error:3.770, 3) Mean 

Standardized Error: 8.1318e-005, 4) Root-

Mean-Square Standardized Error: 0.3557, 

5) Average Standard Error: 10.6550. 

 

Results of the validation of PC1 SSPM 

The validation of PC1 SSPM is obtained 

by comparing the estimated and observed 

PC1 between 1996 and 2003 based on the 

time series between 1986 and 1991 is 

shown in Table 17. As a sample, for the 

estimated PC1of 1996, the linear function 

between the predicted and observed is: 

23.1465 + 0.423927*x; where x is the 

observed value. The statistics of the 

adjusted linear model are: Samples: 73, 

correlation coefficient (CC): 0.652297, 

determination coefficient: R
2
: 0.425, 

adjusted determination coefficient: 

R
2

adjusted:0.4175, Standard Error of 

Estimation (SEE): 33.1997, Mean absolute 

error (MAE): 27.5367, and Durbin Watson 

Coefficient (DW): 1.14484. In general, the 

statistics vary between: CC: 0.566 and 

0.6502, R
2
: 0.3207 and 0.4254, R

2
adjusted: 

0.3673 and 0.4175. SEE: 14.8382 and 

33.1997. MAE: 12.7754 and 27.5367. 

DW: 0.892394 and 1.22745. 

 

The validation of PC1 SSPM is obtained 

by comparing the estimated and observed 

PC1 between 2015 and 2016 based on the 

time series between 1996 and 2003is 

shown in Table 18. As a sample, for the 

estimated PC1 of 2016, the linear function 

between the predicted and observed is: 

8.02645 + 0.422091*x; where x is the 

observed value. The statistics of the 

adjusted linear model are: Samples: 361, 

correlation coefficient (CC): 0.547798, 

determination coefficient: R
2
: 0.300, 

adjusted determination coefficient: 

R
2

adjusted:0.2971, Standard Error of 

Estimation (SEE): 2.90821, Mean absolute 

error (MAE): 1.86529, and Durbin Watson 

Coefficient (DW): 1.25292.  

 

Results of the forecasting of PC1 SSPM 

coefficients 

The results of the forecasting for the two 

time series of PC1 SSPM coefficients from 

1992 to 2030; from 2004 to 2030 based on 

the time series between 1986 and 1991, as 

well as 1996 and 2003, respectively, are 

shown in Tables 9 and 10 as it has been 

described in the section 4.3; these 

coefficients are generated from the 

ARIMA (1,0,0) and Brown's linear 

exponential smoothing models, 

respectively. As a sample, the forecasted 

PC1 SSPM coefficients for 2020 and 2030 

are: First time series: 2020: a: 67.3352, b: 

121.382, c: 3384.75, d: 6.48529. 2030: a: 

67.2386, b: 121.382, c: 3384.75, d: 

6.48529.  Second time series: 2020: a: 

110.164, b: 159.103, c: 3861.34, d: 

7.66497.  2030: a: 122.366, b: 186.173, c: 

4063.95, d: 7.326. 

 

Results of the calibration of CP1 SSPM 

with forecasted coefficients 

The results of the calibration of PC1 

SSPM for 2020 and 2030 with forecasted 

coefficients based on the time series 

between 1986 and 1991, as well as 1996 

and 2003 are shown in Tables 19 and 20. 

As a sample, for the estimated PC1of 2020 

in the first time series, the CP1 SSPM is 

described by: 67.335*Nugget+121.38*J-

Bessel (3384.8, 6.4853) being the 

coefficients:  a: 67.335, b: 121.38, c: 

3384.8and d: 6.4853. The predicted 

regression function (PRF): 

0.782482497946622 * x + 
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8.66482580355468, error regression 

function (ERF): -0.217517502057148 * x 

+ 8.66482580370286, standardized error 

regression function (SERF): -

0.0258635513022785 * x + 

1.03028148988674. The sample size is: 

3209460. The error predictions vary in the 

following ranges: 1) Mean Error: -

0.001485, 2) Root-Mean-Square Error: 

4.83535, 3) Mean Standardized Error: -

0.000179, 4) Root-Mean-Square 

Standardized Error: 0.57487, 5) Average 

Standard Error: 8.40924. 

 

Results of the application of the change 

detection techniques 

The results by applying the change 

detection technique based on the CP1 

image difference corresponding to the 

bitemporal reflectance images as a 

proportion of Change / No Change areas in 

thePao river basin from 1986-2016 for the 

following cases: 1)using the forecasted 

PC1 image  of 2016 from time series 

between 1986 and 1991 (Table 21 and 

Figure 3), 2) using the forecasted PC1 

image  of 2016 from time series between 

1996 and 2003 (Table 22 and Figure 4), 3) 

using the original PC1 2016 (Table 23 and 

Figure 5).As a sample, the Change/No 

Change area for the 2015-2016 difference 

image is according to the cases:1)5.85 % 

and 94.14%, 2) 4.71 % and 95.28%, and 3) 

3.98 % and 96.01%.In general, the Figures 

3a and 3c, 4a and 4c, 5a and 5c show that 

the most of the changes occurs in the a and 

c water reservoirs and these are 

negatives,which means that the reflectance 

for 2016 is higher than in 1986 and 2000, 

respectively. The Figures 3b and 3d, 4b 

and 4d, 5b and 5d show that the most of 

the changes occurs in the urban zones and 

these are positives meaning that the 

reflectance for 2016 is lower than 1990 

and 2015, respectively. The changes occur 

due to the transformation possible from 

vegetation to urban zones.  

 

The results by applying the following 

methods expressed by the proportion of 

Change / No Change areas in the Pao river 

basin from 1986 to 2016; using the 

original PC1 images: a) difference of 

bitemporal reflectance images (Table 24), 

b) ratio of the bitemporal reflectance 

images (Table 25). As a sample, the 

Change/No Change area for the 2015-2016 

is: a) 5.46 % and 94.54; b) 0.86 % and 

99.14%, respectively. 

 

Results of comparison of the change 

detection techniques 

The results by comparing the change 

detection techniques are identified as 

follows (Figure 6): M1: PC1 image using 

the forecasted PC1 image of 2016 from 

time series between 1986 and 1991. M2: 

PC1 image difference using the forecasted 

PC1 image of 2016 from time series 

between 1996 and 2003. M3: using the 

original PC1 2016, M4: reflectance image 

difference, M5: image ratioing. The 

percentage in the areas of change / no 

change does not differ in a way 

significantly between the methods for 

2000 and 2015. This is a validation mode 

of the results founded by the observed 

relative comparing in the description of the 

Figures 3, 4 and 5. 

 

DISCUSSION 

The proposed method is a hybrid that 

includes three types of applied models that 

are based on time series of reflectance 

images in sequence as follows: the 

principal component analysis, the 

statistical spatial prediction models and 

forecasting models for time series.  

 

The forecasted results are shown by two 

future times and following cases (Figures 

7 and 8, Tables 26, 27 and 28): 1) 

difference CP1 image being the forecasted 

CP1 based on the time series between 

1986 and 1991: a) 2020-2016, b) 2030-

2016 and 2) difference CP1 image being 

the forecasted CP1 based on the time 

series between 1986 and 1991:  a) 2020-
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2016, b) 2030-2016. In general, the pattern 

shown predicts two changes: 1) increase in 

the reflectance in the urban zone to the 

north of Pao river basin, this implies 

coverage extensions due to the urban 

grow; 2) decrease in the reflectance on the 

c water reservoir indicating a possible 

elimination of sediments and algae. The 

forecasted changes in the Pao river basin 

for 2020 and 20130 vary from: 5.54 to 8. 

14% (Table 26, Figure 7), 5.52 to 8. 14% 

(Table 27, Figure 8). These changes are 

equivalent to those observed from 2000 

and 2016 of 5.13% (Table 23) as well as 

from 1990 to 2016 of 7.05 % (Table 23).   

 

The comparison of the forecasting 

methods of LULC change detection 

indicates the following aspects: 1) the 

method with the highest frequency of 

application is the Markovian chains 

analysis (Jianping et al., 2005; Yin et al., 

2007;Hadi et al., 2014;Kumar et al., 2014; 

Han et al., 2015; Padonou et al., 2017); 

which requires in order to generate the 

predictions at least two LUCL maps 

corresponding to date separated in time, 

and to make a validation of results. The 

studies founded are recorded from the 

beginning of the year 2000 to the present. 

2) In addition, another applied method is 

based on neural networks focused in multi-

layer perceptron with a low frequency 

(Pijanowski et al., 2002; Mishra et al., 

2014). Both methods require a preview 

application of the supervised classification 

algorithms and post-classification 

comparison to obtain the LULC maps. The 

current study proposes a method that 

contributes to introduce the temporal 

pattern of LULC changes captured by the 

statistical spatial prediction method 

coefficients and provides results 

characterized by a seasonality parameter; 

which is able to reproduce the spatio-

temporal variation collected by the 

reception of the reflectance variable by 

satellite sensor. 

 

 

CONCLUSIONS 

The proposed method is a hybrid 

combination that includes three types of 

applied models that are based on time 

series of reflectance images in sequence as 

follows: the principal component analysis, 

the statistical spatial prediction models and 

forecasting models for time series. The 

current study proposes a method that 

contributes to introduce the temporal 

pattern of LULC changes captured by the 

statistical spatial prediction method 

coefficients and provides results 

characterized by a seasonality parameter; 

which is able to reproduce the spatio-

temporal variation collected by the 

reception of the reflectance variable by 

satellite sensor. The statistics of error 

predictions indicates gradients of the 

predicted and observed function 

approximated to the unity as well as near 

to zero for the errors. The samples 

evaluated in the validation stage give 

correlation coefficient upper to 0.6; being 

a successful adjust between observed and 

predicted values.  
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Fig 1. Map of relative location of the Pao river basin regarding to the Bolivarian Republic of 

Venezuela. The study area is outlined in the box. The classified LULC map shows the spatial 

distribution of uses and coverage: 1) urban, 2) rangeland, 3) agricultural. 4) vegetation, 

5)water reservoir, 6) clouds, and 7) shadows. 
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Fig 2. Workflow of method for forecasting of changes in land use and land cover using 

satellite remote sensing techniques 
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Fig 3. Results by applying the change detection technique based on the difference of the 

principal component No. 1 corresponding to the  reflectance images as a proportion of 

Change / No Change areas in the Pao river basin from 1986-2016; using the forecasted PC1 

of 2016 from time series between 1986 and 1991.  The parameters are: C: Change (Grey), 

NC: No Change (Blue/Red), PAR: Percentage Area Ratio. a) 1986-2016, b) 1990-2016, c) 

2000-2016 and d) 2015-2016. 
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Fig 4. Results by applying the change detection technique based on the difference of the 

principal component No. 1 corresponding to the  reflectance images as a proportion of 

Change / No Change areas in the Pao river basin from 1986-2016; using the forecasted PC1 

2016 from time series between 1996 and 2003. The parameters are: C: Change (Grey), NC: 

No Change (Blue/Red), PAR: Percentage Area Ratio. a) 1986-2016, b) 1990-2016, c) 2000-

2016 and d) 2015-2016. 
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Fig 5. Results by applying the change detection technique based on the difference of the 

principal component No. 1 corresponding to the  bitemporal reflectance images as a 

proportion of Change / No Change areas in the Pao river basin from 1986-2016; using the 

observed PC1 of 2016.  The parameters are: C: Change, NC: No Change, PAR: Percentage 

Area Ratio. a) 1986-1990, b) 1990-2016, c) 2000-2016 and d) 2015-2016. 

 

 
Fig 6. Results by comparing the change detection techniques: M1: PC1 image difference 

using the forecasted PC1 image for 2016. M2: PC1 image difference using the observed PC1 

image for 2016. M3: reflectance image difference, M4: image ratioing. 

 

 

 

 

0

20

40

60

80

100

120

1986-2016 1990-2016 2000-2016 2015-2016

A
re

a 
(%

)

M1: C

M2: C

M3: C

M4: C

M5: C

M1: NC

M2: NC

M3: NC

M4: NC

M5: C

 
 



 

 

 

 

18 Page 1-34 © MAT Journals 2018. All Rights Reserved 

 

Journal of Remote Sensing GIS & Technology  

Volume 4 Issue 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Results of forecasted difference CP1 being the forecasted CP1 based on the time series 

between 1986 and 1991, a) 2020-2016, b) ) 2030-2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.Results of forecasted difference CP1 being the forecasted CP1 based on the time series 

between 1986 and 1991, a) 2020-2016, b) ) 2030-2016 
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Table 1 Characteristics of Landsat satellite images corresponding to the 005, 053 scene 

containing the Pao river basin 
N° 1 2 3 4 5 6 7 

1 LT50050531986351XXX03 1986-

12-17 

14:11:28.3900750Z 20.00 7 134.93319530 42.24871979 

2 LT40050531987346XXX09 1987-

12-12 

14:14:44.6630060Z 15.00 9 135.91098925 43.53223353 

3 LT40050531988093XXX01 1988-

04-02 

14:18:47.0440560Z 2.00 9 95.54851624 55.19353086 

4 LT40050531989287XXX02 1989-

10-14 

14:25:49.9650380Z 27.00 9 121.81287211 56.05265489 

5 LT50050531990010CPE03 1990-

01-10 

14:15:12.2020810Z 11.00 7 131.96692328 41.77289720 

6 LT50050531991077CPE01 1991-

03-18 

14:14:04.6490630Z 28.00 7 104.58761331 51.37583561 

7 LT50050531996299XXX02 1996-

10-25 

14:12:26.1290060Z 18.00 9 124.94450537 51.52871601 

8 LT50050531997125AAA02 1997-

05-05 

14:20:38.5360810Z 50.00 9 75.28557916 57.71333274 

9 LT50050531998032CPE00 1998-

02-01 

14:28:28.6110190Z 33.00 9 127.94531961 46.11991603 

10 LT50050531999019CPE00 1999-

01-19 

14:31:37.3780560Z 23.00 9 132.94664692 45.23014868 

11 LE70050532000014SGS01 2000-

01-14 

14:45:26.0198689Z 7.00 9 137.52485114 47.22916723 

12 LT50050532001008AAA02 2001-

01-08 

14:32:22.5760750Z 10.00 9 135.84219087 44.77755780 

13 LE70050532002051AGS00 2002-

02-20 

14:41:26.1414958Z 22.00 9 122.73905080 52.13911206 

14 LE70050532003022PFS00 2003-

01-22 

14:41:05.9709036Z 10.00 9 134.07217263 47.15930857 

15 LO80050532015063LGN00 2015-

03-04 

14:52:20.8148112Z 13.13 9 119.09567247 57.19634293 

16 LC80050532016018LGN00 2016-

01-18 

14:52:41.9360648Z" 6.09 9 138.18721946 48.77317194 

1) the scene identification code, 2) the acquisition date, 3) the scene center time, 4) the cloud 

coverage, 5) the image quality,6) the angle of solar azimuth and 7) the angle of solar zenith. 

 

Table 2Landsat Image Spectral Bands 
Landsat 4TM / 5 TM Landsat 7 ETM Landsat 8 OLI 

1 2 3 1 2 3 1 2 3 

Unit µm m Unit µm m Unit µm m 

Spectral Band 

1 

0.452-0.518 30 Spectral Band 

1 

0.452-

0.514 

30 Spectral Band 

1 

0.43 – 

0.45 

30 

Spectral Band 

2 

0.528-0.609 30 Spectral Band 

2 

0.519-

0.601 

30 Spectral Band 

2 

0.45 – 

0.51 

30 

Spectral Band 

3 

0.626-0.693 30 Spectral Band 

3 

0.631-

0.692 

30 Spectral Band 

3 

0.53 – 

0.59 

30 

Spectral Band 

4 

0.776-0.904 30 Spectral Band 

4 

0.772-

0.898 

30 Spectral Band 

4 

0.64 – 

0.67 

30 

Spectral Band 

5 

1.567-1.784 30 Spectral Band 

5 

1.547-

1.748 

30 Spectral Band 

5 

0.85 – 

0.88 

30 

Spectral Band 

6 

10.45-12.42 30 Spectral Band 

6 

10.31-

12.36 

30 Spectral Band 

6 

1.57 – 

1.65 

30 

Spectral Band 

7 

2.097-2.349 30 Spectral Band 

7 

2.065-

2.346 

30 Spectral Band 

7 

2.11 – 

2.29 

30 

1: Spectral Band, 2: Spectral Range, 3: Cell Size 
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Table 3 Results of transformation method of principal components expressed by the 

covariance matrix from the reflectance percentage image in 1986 in the Pao river basin 
 PC1 PC 2 PC 3 PC 4 PC 5 PC 6 

Spectral Band 1 31.46 36.53 34.75 52.42 52.02 41.81 

Spectral Band 2 36.53 44.75 42.31 69.37 67.38 52.04 

Spectral Band 3 34.75 42.31 41.53 58.83 62.70 50.47 

Spectral Band 4 52.42 69.37 58.83 191.36 149.65 90.79 

Spectral Band 5 52.02 67.38 62.70 149.65 147.89 98.64 

Spectral Band 7 41.81 52.04 50.47 90.79 98.64 73.90 

 

Table 4 Results of transformation method of principal components expressed by the 

correlation matrix from the reflectance percentage image in 1986 in the Pao river basin 
 PC1 PC 2 PC 3 PC 4 PC 5 PC 6 

Spectral Band 1 1.00 0.97 0.96 0.67 0.76 0.86 

Spectral Band 2 0.97 1.00 0.98 0.74 0.82 0.90 

Spectral Band 3 0.96 0.98 1.00 0.65 0.80 0.91 

Spectral Band 4 0.67 0.74 0.65 1.00 0.88 0.76 

Spectral Band 5 0.76 0.82 0.80 0.88 1.00 0.94 

Spectral Band 7 0.86 0.90 0.91 0.76 0.94 1.00 

 

Table 5 Results of transformation method of principal components expressed by the 

eigenvalues from the reflectance percentage images between 1986 and 2016 in the Pao river 

basin 
 Principal Components PC1 PC 2 PC 3 PC 4 PC 5 PC 6 

1986 Eigenvalues 462.42 48.56 17.24 1.28 1.13 0.27 

Percentage of Variance 87.1 9.15 3.25 0.24 0.21 0.05 

1987 Eigenvalues 575.13 108.32 25.65 2.34 1.45 0.41 

Percentage of Variance 80.63 15.19 3.60 0.33 0.20 0.06 

1988 Eigenvalues 923.04 51.47 21.88 5.33 1.69 0.49 

Percentage of Variance 91.94 5.13 2.18 0.53 0.17 0.05 

1989 Eigenvalues 760.41 95.11 14.72 5.01 1.18 0.37 

Percentage of Variance 86.73 10.85 1.68 0.57 0.13 0.04 

1990 Eigenvalues 381.68 40.11 8.42 1.16 0.69 0.21 

Percentage of Variance 88.30 9.28 1.95 0.27 0.16 0.05 

1991 Eigenvalues 449.96 36.98 11.49 1.46 0.63 0.24 

Percentage of Variance 89.86 7.38 2.29 0.29 0.13 0.05 

1996 Eigenvalues 975.80 158.89 16.82 6.11 1.53 0.41 

Percentage of Variance 84.15 13.70 1.45 0.53 0.13 0.04 

1997 Eigenvalues 1,113.97 114.25 48.13 6.36 2.49 0.67 

Percentage of Variance 86.63 8.89 3.74 0.49 0.19 0.05 

1998 Eigenvalues 374.23 28.7 7.53 1.22 0.58 0.19 

Percentage of Variance 90.73 6.96 1.83 0.30 0.14 0.05 

1999 Eigenvalues 347.8 38.53 7.21 1.07 0.43 0.2 

Percentage of Variance 88.00 9.75 1.82 0.27 0.11 0.05 

2000 Eigenvalues 228.58 22.2 6.41 0.85 0.28 0.13 

Percentage of Variance 88.44 8.59 2.48 0.33 0.11 0.05 

2001 Eigenvalues 368.47 35.46 35.46 1.27 0.55 0.23 

Percentage of Variance 83.47 8.03 8.03 0.29 0.12 0.05 

2002 Eigenvalues 270.95 17.73 6.28 0.87 0.43 0.16 

Percentage of Variance 91.41 5.98 2.12 0.29 0.14 0.05 

2003 Eigenvalues 221.75 17.09 8.32 1.09 0.43 0.15 

Percentage of Variance 89.12 6.87 3.34 0.44 0.17 0.06 

2015 Eigenvalues 417.51 42.73 22.53 1.14 0.84 1.14 

Percentage of Variance 85.93 8.79 4.64 0.23 0.17 0.23 

2016 Eigenvalues 317.45 31.75 13.07 1.16 0.65 0.22 

Percentage of Variance 87.13 8.72 3.59 0.32 0.18 0.06 
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Table 6 Results of Modeling of PC1 Statistical Spatial Prediction for the time series of 

images between 1986 and 1991 in the Pao river basin 
Date of 

Image 

SSPM KriggingOrdinario 

1986-12-17 CP1 SSPM 159.64*Nugget+31.758*J-Bessel(7602,5.7902) 

PRF 0.799731574082857 * x + 7.05960598625623 

ERF -0.200268425931927 * x + 7.05960598676827 

SERF -0.0154675752092125 * x + 0.54524241176202 

Samples 3209460 

Mean Error -0.0019173166839584314 

Root-Mean-Square Error 5.1862243104401085 

Mean Standardized Error -0.00014926537731710268 

Root-Mean-Square 

Standardized Error 

0.40050630917911345 

Average Standard  Error  12.947360217762062 

1987-12-12 CP1 SSPM 0.097*Nugget+76.111*J-Bessel(64.405,2.0767) 

PRF 0.889478992125323 * x + 3.88654695824879 

ERF -0.110521007872142 * x + 3.88654695815341 

SERF -0.0160340988929681 * x + 0.563850296625761 

Samples 3209460 

Mean Error 0.0018465977454287514 

Root-Mean-Square Error 3.898472158233897 

Mean Standardized Error 0.00016780333774329005 

Root-Mean-Square 

Standardized Error 

0.5636863951205011 

Average Standard  Error  6.888670197418042 

1988-04-02 CP1 SSPM 54.134*Nugget+326.36*J-Bessel(989.15,9.2224) 

PRF 0.902282369636342 * x + 4.61826614802535 

ERF -0.0977176303647713 * x + 4.61826614808384 

SERF -0.012921629881312 * x + 0.610679849129799 

Samples 3209460 

Mean Error -0.0003050127444388146 

Root-Mean-Square Error 5.557555260279461 

Mean Standardized Error -5.965826071557145e-005 

Root-Mean-Square 

Standardized Error 

0.734312845440025 

Average Standard  Error  7.560542716851552  

1989-10-14 CP1 SSPM 84.714*Nugget+284.77*J-Bessel(1084.2,2.5598) 

PRF 0.901454202041896 * x + 4.23186554810007 

ERF -0.0985457979590722 * x + 4.23186554816133 

SERF -0.0104366787658701 * x + 0.448179093198231 

Samples 3209460 

Mean Error -0.0007626455418015807 

Root-Mean-Square Error 5.108037627915864 

Mean Standardized Error -9.005058363326744e-005 

Root-Mean-Square 

Standardized Error 

0.5406895220799085 

Average Standard  Error  9.441980564390827 

1990-01-10 CP1 SSPM 93.06*Nugget+26.172*J-Bessel(10285,10) 

PRF 0.703229399531795 * x + 10.7993326061133 

ERF -0.296770600460002 * x + 10.7993326058145 

SERF -0.0300190349161297 * x + 1.09238418157416 

Samples 3209460  

Mean Error 0.0002135973177622011 

Root-Mean-Square Error 5.28894953218514 

Mean Standardized Error 1.9137466452028658e-005 

Root-Mean-Square 

Standardized Error 

0.5349612674187941 
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Average Standard  Error  9.885314796283724  

1991-03-18 CP1 SSPM 50.08*Nugget+38.762*J-Bessel(930.12,10) 

PRF 0.78781101578049 * x + 8.44603370464268 

ERF -0.212188984223356 * x + 8.44603370479447 

SERF -0.0292411234294779 * x + 1.16392340098242 

Samples 3209460 

Mean Error 0.00041439428085523203 

Root-Mean-Square Error 4.787403770202878 

Mean Standardized Error 4.967220533336505e-005 

Root-Mean-Square 

Standardized Error 

0.6595792663863833 

Average Standard  Error  7.255330994915141 

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function, ERF: Error 

Regression Function, SERF: Standardized Error Regression Function, PE: Prediction 

Errors. 

 

Table 7 Results of Modeling of PC1 Statistical Spatial Prediction for the time series of 

images between 1996 and 2003 in the Pao river basin 
Image Date SSPM KriggingOrdinario 

1996-10-25 CP1 SSPM 205.97*Nugget+623.24*J-Bessel(1048.7,10) 

PRF 0.911847018491454 * x + 3.0772456719974 

ERF -0.0881529814835731 * x + 3.07724567111303 

SERF -0.00598624997099158 * x + 0.208962582046893 

Samples 3209460  

Mean Error 0.0002361411944831531 

Root-Mean-Square Error 6.952142581022121 

Mean Standardized Error 9.040431070166409e-006 

Root-Mean-Square 

Standardized Error 

0.47194407012537226 

Average Standard  Error  14.7243092196546 

1997-05-05 CP1 SSPM 310.33*Nugget+466.06*J-Bessel(2089.5,10) 

PRF 0.894066850677241 * x + 4.87510746067751 

ERF -0.105933149328431 * x + 4.87510746093857 

SERF -0.00586772965482358 * x + 0.270034219232626 

Samples 3209460  

Mean Error 0.000387580272136297 

Root-Mean-Square Error 7.420257109859033 

Mean Standardized Error 1.931519392532719e-005 

Root-Mean-Square 

Standardized Error 

0.41097477765655654 

Average Standard  Error  18.05260380725329 

1998-02-01 CP1 SSPM 74.25*Nugget+19.209*J-Bessel(5725.8,1.6071) 

PRF 0.764681287942356 * x + 8.52765174704023 

ERF -0.235318712063256 * x + 8.52765174724663 

SERF -0.0266491954774068 * x + 0.965733444200238 

Samples 3209460  

Mean Error 0.0012559177124396325 

Root-Mean-Square Error 4.70088169444872 

Mean Standardized Error 0.0001391375112095437 

Root-Mean-Square 

Standardized Error 

0.5323196031897652 

Average Standard  Error  8.829911992963925 

1999-01-19 CP1 SSPM 45.365*Nugget+30.447*J-Bessel(1561.4,10) 

PRF 0.696624976920017 * x + 10.7200708164001 

ERF -0.303375023076431 * x + 10.7200708162761 

SERF -0.0439452312244089 * x + 1.55284757948658 

Samples 3209460  
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Mean Error 0.0007799062758078891 

Root-Mean-Square Error 4.81780373275036 

Mean Standardized Error 0.00010769952539223274 

Root-Mean-Square 

Standardized Error 

0.6978087573357692 

Average Standard  Error  6.903091750871226 

2000-01-14 CP1 SSPM 54.377*Nugget+11.855*J-Bessel(21540,10) 

PRF 0.703252761472107 * x + 8.34425823397275 

ERF -0.296747238526837 * x + 8.34425823394567 

SERF -0.0392697378537949 * x + 1.10423559947758 

Samples 3209460 

Mean Error 0.0017249972254052496 

Root-Mean-Square Error 4.188480984250345 

Mean Standardized Error 0.000225049233233831 

Root-Mean-Square 

Standardized Error 

0.5542426001813652 

Average Standard  Error  7.556388965855685  

2001-01-08 CP1 SSPM 59.823*Nugget+40.94*J-Bessel(1063.8,0.83536) 

PRF 0.774561438255423 * x + 7.9257530330345 

ERF -0.225438561756292 * x + 7.92575303344383 

SERF -0.0284352400150651 * x + 0.999705037515326 

Samples 3209460 

Mean Error 0.0007942935902049207 

Root-Mean-Square Error 4.832476870328396 

Mean Standardized Error 9.417744764782963e-005 

Root-Mean-Square 

Standardized Error 

0.609399764859904 

Average Standard  Error  7.928230627386897 

2002-02-20 

 

CP1 SSPM 32.763*Nugget+31.259*J-Bessel(768.9,10) 

PRF 0.810445926499447 * x + 5.55054837558971 

ERF -0.189554073512134 * x + 5.55054837593189 

SERF -0.0322715057494078 * x + 0.944972302359014 

Samples 3209460  

Mean Error 0.0005157982606197191 

Root-Mean-Square Error 4.162259278136349 

Mean Standardized Error 7.475205091843644e-005 

Root-Mean-Square 

Standardized Error 

0.708470044071738 

Average Standard  Error  5.87289745166136 

2003-01-22 CP1 SSPM 33.077*Nugget+22.274*J-Bessel(1756.5,10) 

PRF 0.810141456241153 * x + 4.94681418534353 

ERF -0.189858543761731 * x + 4.9468141854209 

SERF -0.0322106970066574 * x + 0.839252201078166 

Samples 3209460  

Mean Error 0.0008555654354083932 

Root-Mean-Square Error 3.7662111254077453 

Mean Standardized Error 0.00014082041175700772 

Root-Mean-Square 

Standardized Error 

0.6388667298074561 

Average Standard  Error  5.894237351562172 

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function, ERF: Error 

Regression Function, SERF: Standardized Error Regression Function, PE: Prediction 

Errors. 
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Table 8 Results of Modeling of PC1 Statistical Spatial Prediction for the time series of 

images between 2015 and 2016 in the Pao river basin 
Image Date SSPM KriggingOrdinario 

2015-03-04 

 

CP1 SSPM 114.17*Nugget+29.926*J-Bessel(8543.9,10) 

PRF 0.82162642122063 * x + 6.34632257940418 

ERF -0.178373578777378 * x + 6.34632257933382 

SERF -0.0162896615727218 * x + 0.579566435521559 

Samples 3209460 

Mean Error -0.00083668886522783 

Root-Mean-Square Error 4.914518766730799 

Mean Standardized Error -7.853671650026577e-005 

Root-Mean-Square Standardized 

Error 

0.44874908207113473 

Average Standard  Error  10.949393610905199 

2016-01-18 

 

CP1 SSPM 29.446*Nugget+37.468*J-Bessel(698.43,3.2634) 

PRF 0.708783902685329 * x + 9.73369182020995 

ERF -0.291216097316587 * x + 9.7336918202749 

SERF -0.0522984189997559 * x + 1.74803305891607 

Samples 3209460 

Mean Error 0.00034861763405749337 

Root-Mean-Square Error 4.558879876022711 

Mean Standardized Error 4.642839411160511e-005 

Root-Mean-Square Standardized 

Error 

0.8185263904213044 

Average Standard  Error  5.568073894072198 

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function, ERF: Error 

Regression Function, SERF: Standardized Error Regression Function, PE: Prediction 

Errors. 

 

Table 9 Forecasting of PC1 SSPM Coefficients based on the time series between 1986 and 

1991 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with 

constant 

ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant 

(B) Linear trend = 13597.7 + -
6.80114 t 

Linear trend = 9015.67 -
4.4682 t 

Linear trend = 151355. -
74.359 t 

Linear trend = -2161.21 + 
1.09018 t 

(C) Simple exponential 

smoothing with alpha = 
0.0775 

Simple exponential 

smoothing with alpha = 
0.1288 

Simple exponential smoothing 

with alpha = 0.1098 

Simple exponential smoothing 

with alpha = 0.1783 

(D) Brown's linear exp. 

smoothing with alpha = 
0.038 

Brown's linear exp. 

smoothing with alpha = 
0.0605 

Brown's linear exp. smoothing 

with alpha = 0.0536 

Brown's linear exp. smoothing 

with alpha = 0.0691 

(E) Brown's quadratic exp. 

smoothing with alpha = 
0.0251 

Brown's quadratic exp. 

smoothing with alpha = 
0.0392 

Brown's quadratic exp. 

smoothing with alpha = 0.0352 

Brown's quadratic exp. 

smoothing with alpha = 
0.0428 

 

Table 10 Forecasting of PC1 SSPM Coefficients based on the time series between 1996 and 

2003 
 Coefficient 

 a b c d 

(A) ARIMA(1,0,0) with constant ARIMA(1,0,0) with 
constant 

ARIMA(1,0,0) with constant ARIMA(1,0,0) with constant 

(B) Linear trend = 62761.4 + -

31.3376 t 

Linear trend = 150931 -

75.4067 t 

Linear trend = -98879.9 + 

51.675 t 

Linear trend = 62.9158 -

0.0275621 t 
(C) Simple exponential 

smoothing with alpha = 

0.6694 

Simple exponential 

smoothing with alpha = 

0.9999 

Simple exponential smoothing 

with alpha = 0.9999 

Simple exponential smoothing 

with alpha = 0.9999 

(D) Brown's linear exp. 

smoothing with alpha = 

0.0468 

Brown's linear exp. 

smoothing with alpha = 

0.0459 

Brown's linear exp. smoothing 

with alpha = 0.0277 

Brown's linear exp. smoothing 

with alpha = 0.0416 

(E) Brown's quadratic exp. 

smoothing with alpha = 

0.0304 

Brown's quadratic exp. 

smoothing with alpha = 

0.0273 

Brown's linear exp. smoothing 

with alpha = 0.0279 

Brown's quadratic exp. 

smoothing with alpha = 

0.0268 
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Table 11 Error statistics by fitting the forecasting models to the CP1 SSPM coefficients based 

on the time series between 1986 and 1991 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 43.0168 26.4774 3.2464 149.069 104.798 4.34991 4306.73 3113.61 189.467 3.84892 2.67851 -

0.0371282 

(B) 57.9756 37.7331 1.98952E-
13 

153.15 116.606 1.51582E-
13 

4829.95 3609.23 1.45519E-
11 

3.41457 2.49656 -1.4877E-
14 

(C) 57.0119 40.6444 10.2037 149.267 112.128 26.5401 4694.35 3529.3 947.312 4.01324 3.50042 -
0.0152302 

(D) 56.9325 40.6381 9.6481 148.588 113.471 22.6457 4664.11 3574.5 827.624 4.08045 3.56827 -0.140601 

(E) 56.9077 40.632 9.48725 148.415 113.754 21.7463 4654.4 3586.65 793.324 4.10102 3.58426 -0.207678 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 

 

Table 12 Error statistics by fitting the forecasting models to the CP1 SSPM coefficients based 

on the time series between 1996 and 2003 
Model a b c d 

RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME 

(A) 71.3372 46.1758 -

2.03837E-

12 

174.613 85.5275 -38.578 7411.07 4401.36 -18.0989 4.01972 2.94246 0.0740119 

(B) 94.0695 58.6162 -33.1682 172.03 130.048 1.86873E-

12 

7652.26 4607.24 -

2.55795E-

12 

4.39443 3.29204 5.66214E-

15 

(C) 108.886 87.5653 -4.02591 179.637 85.1992 -75.1262 11026.1 6322.22 88.396 6.6422 4.38938 -

9.64675E-

10 
(D) 109.578 86.3727 -0.559163 259.724 207.967 -6.1749 7420.63 4123.25 1325.63 4.30965 3.07081 -0.707596 

(E) 94.5702 64.261 -9.13959 260.766 204.837 2.75543 7420.49 4128.36 1317.94 4.30232 3.08073 -0.682335 

RMSE = root mean squared error, MAE = mean absolute error, ME = mean error 

 

Table 13 Forecasting of PC1 SSPM Coefficients between 1992 and 2003 based on the time 

series between 1986 and 1991 from forecasting model identified as ARIMA(1,0,0) 
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

1992 81.6504 -41.8461 205.147 100.212 -314.743 515.167 4621.89 -7536.42 16780.2 5.14162 -5.54938 15.8326 
1993 55.0623 -106.396 216.521 115.957 -312.403 544.318 2761.6 -10853.1 16376.3 6.99896 -4.44665 18.4446 

1994 77.4543 -106.234 261.142 119.992 -309.234 549.218 3699.0 -10261.3 17659.3 6.28891 -5.26286 17.8407 

1995 58.5962 -139.351 256.543 121.026 -308.257 550.308 3226.64 -10820.1 17273.4 6.56036 -5.00685 18.1276 
1996 74.4782 -132.99 281.946 121.29 -307.996 550.577 3464.67 -10603.9 17533.2 6.45658 -5.11288 18.026 

1997 61.1026 -152.861 275.067 121.358 -307.929 550.645 3344.72 -10729.4 17418.9 6.49626 -5.07353 18.066 

1998 72.3673 -146.087 290.822 121.376 -307.911 550.663 3405.16 -10670.4 17480.7 6.48109 -5.08875 18.0509 

1999 62.8804 -158.704 284.464 121.38 -307.907 550.667 3374.71 -10701.2 17450.6 6.48689 -5.08296 18.0567 

2000 70.8701 -152.907 294.648 121.381 -307.906 550.668 3390.05 -10685.9 17466.0 6.48467 -5.08517 18.0545 

2001 64.1413 -161.179 289.461 121.382 -307.905 550.669 3382.32 -10693.7 17458.3 6.48552 -5.08433 18.0554 
2002 69.8082 -156.6 296.216 121.382 -307.905 550.669 3386.22 -10689.8 17462.2 6.48519 -5.08465 18.055 

2003 65.0356 -162.141 292.212 121.382 -307.905 550.669 3384.25 -10691.8 17460.3 6.48532 -5.08453 18.0552 

2004 69.055 -158.665 296.775 121.382 -307.905 550.669 3384.75 -10691.3 17460.8 6.48529 -5.08456 18.0551 
2005 65.6699 -162.435 293.774 121.382 -307.905 550.669 3385.0 -10691.0 17461.0 6.48528 -5.08456 18.0551 

2006 68.5208 -159.856 296.898 121.382 -307.905 550.669 3384.87 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2007 66.1199 -162.45 294.69 121.382 -307.905 550.669 3384.93 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2008 68.1419 -160.565 296.849 121.382 -307.905 550.669 3384.9 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2009 66.439 -162.365 295.243 121.382 -307.905 550.669 3384.92 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2010 67.8731 -160.999 296.746 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2011 66.6653 -162.256 295.587 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2012 67.6825 -161.273 296.638 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2013 66.8258 -162.155 295.806 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2014 67.5473 -161.45 296.545 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2015 66.9397 -162.07 295.95 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2016 67.4514 -161.567 296.47 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2017 67.0205 -162.005 296.046 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2018 67.3834 -161.646 296.413 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2019 67.0777 -161.955 296.11 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2020 67.3352 -161.7 296.37 121.382 -307.905 550.669 3384.75 -10691.3 17460.8 6.48529 -5.08456 18.0551 

2021 67.1184 -161.918 296.155 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2022 67.3009 -161.737 296.338 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
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2023 67.1472 -161.891 296.185 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2024 67.2767 -161.762 296.316 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2025 67.1676 -161.872 296.207 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2026 67.2595 -161.78 296.299 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2027 67.1821 -161.858 296.222 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2028 67.2473 -161.793 296.287 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 

2029 67.1924 -161.848 296.232 121.382 -307.905 550.669 3384.91 -10691.1 17460.9 6.48528 -5.08456 18.0551 
2030 67.2386 -161.801 296.279 121.382 -307.905 550.669 3384.75 -10691.3 17460.8 6.48529 -5.08456 18.0551 

 

Table 14 Forecasting of PC1  SSPM Coefficients between 2004 and 2020 based on the time 

series between 1996 and 2003 from forecasting model identified as model Brown's linear 

exponential smoothing with alpha = 0.4099  
Period a b c d 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

 Lower 

95.0% 

Upper 

95.0% 

Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit Forecast Limit Limit 

2004 94.521 -105.138 294.18 130.136 -345.562 605.833 3513.14 -10091.5 17117.7 8.15412 0.253187 16.0551 

2005 95.7068 -104.989 296.402 131.933 -345.369 609.235 3534.9 -10090.9 17160.7 8.12227 0.194037 16.0505 
2006 96.8925 -104.887 298.672 133.73 -345.237 612.698 3556.66 -10090.8 17204.1 8.09042 0.133839 16.047 

2007 98.0782 -104.833 300.989 135.528 -345.167 616.222 3578.42 -10091.3 17248.2 8.05857 0.0725815 16.0446 

2008 99.2639 -104.828 303.356 137.325 -345.159 619.808 3600.19 -10092.4 17292.8 8.02672 0.0102521 16.0432 
2009 100.45 -104.873 305.772 139.122 -345.214 623.458 3621.95 -10094.1 17338.0 7.99487 -

0.0531601 

16.0429 

2010 101.635 -104.967 308.238 140.919 -345.332 627.171 3643.71 -10096.4 17383.8 7.96302 -0.117665 16.0437 
2011 102.821 -105.111 310.753 142.717 -345.514 630.948 3665.48 -10099.2 17430.2 7.93117 -0.183274 16.0456 

2012 104.007 -105.306 313.32 144.514 -345.762 634.79 3687.24 -10102.7 17477.1 7.89931 -0.249995 16.0486 

2013 105.193 -105.551 315.937 146.311 -346.074 638.696 3709.0 -10106.7 17524.7 7.86746 -0.317836 16.0528 
2014 106.378 -105.848 318.605 148.108 -346.452 642.669 3730.77 -10111.3 17572.9 7.83561 -0.386807 16.058 

2015 107.564 -106.196 321.324 149.906 -346.896 646.708 3752.53 -10116.6 17621.6 7.80376 -0.456914 16.0644 

2016 108.75 -106.595 324.094 151.703 -347.407 650.813 3774.29 -10122.4 17671.0 7.77191 -0.528164 16.072 
2017 109.935 -107.045 326.916 153.5 -347.984 654.985 3796.05 -10128.9 17721.0 7.74006 -0.600563 16.0807 

2018 107.975 -107.485 323.434 155.498 -348.582 659.579 3817.82 -10136.0 17771.6 7.72766 -0.642451 16.0978 
2019 109.069 -107.835 325.973 157.301 -349.303 663.905 3839.58 -10143.7 17822.8 7.69631 -0.715472 16.1081 

2020 110.164 -108.226 328.553 159.103 -350.092 668.299 3861.34 -10152.0 17874.7 7.66497 -0.789619 16.1196 

2021 112.276 -108.743 333.295 167.919 -350.373 686.211 3870.26 -10167.3 17907.8 7.61266 -0.901758 16.1271 
2022 113.397 -109.279 336.073 169.947 -351.741 691.636 3891.78 -10176.6 17960.2 7.58081 -0.979977 16.1416 

2023 114.518 -109.86 338.896 171.975 -353.201 697.151 3913.3 -10186.5 18013.2 7.54895 -1.05937 16.1573 

2024 115.639 -110.484 341.762 174.004 -354.752 702.759 3934.82 -10197.1 18066.8 7.5171 -1.13994 16.1741 
2025 116.76 -111.153 344.673 176.032 -356.394 708.458 3956.35 -10208.3 18121.0 7.48525 -1.22169 16.1922 

2026 117.881 -111.865 347.628 178.06 -358.129 714.249 3977.87 -10220.2 18175.9 7.4534 -1.30462 16.2114 

2027 119.002 -112.622 350.627 180.088 -359.954 720.131 3999.39 -10232.7 18231.5 7.42155 -1.38873 16.2318 
2028 120.123 -113.422 353.669 182.116 -361.871 726.104 4020.91 -10245.8 18287.6 7.3897 -1.47402 16.2534 

2029 121.245 -114.266 356.755 184.145 -363.879 732.169 4042.43 -10259.6 18344.5 7.35785 -1.56048 16.2762 

2030 122.366 -115.154 359.885 186.173 -365.978 738.324 4063.95 -10274.0 18401.9 7.326 -1.64813 16.3001 

 

Table 15 Calibration of PC1 SSPM with forecasted coefficients between 1996 and 2003 

based on the time series between 1986 and 1991; which will be used in the validation stage. 
Image 

Date 

SSPM KriggingOrdinario Independent Variable 

1996 CP1 SSPM 74.478*Nugget+121.29*J-

Bessel(3464.7,6.4566)) 

PC1 Image in 1991 

PRF 0.782457400083391 * x + 

8.66576413426161 

 

ERF -0.217542599920342 * x + 

8.66576413440802 

 

SERF -0.0245960106431233 * x + 

0.979778911923131 

 

Samples 3209460   

Mean Error -0.001497892148731668  

Root-Mean-Square Error 4.836050429299965  

Mean Standardized Error -0.00017234050107555393  

Root-Mean-Square Standardized 

Error 

0.5466944483203884  

Average Standard  Error  8.84396133470597  

1997 CP1 SSPM 61.103*Nugget+121.36*J-

Bessel(3344.7,6.4963) 

PC1 Image in 1991 

PRF 0.78249065167316 * x + 8.66449102403397  
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ERF -0.217509348330553 * x + 

8.66449102417957 

 

SERF -0.0271500749218015 * x + 

1.08152656268913 

 

Samples 3209460   

Mean Error -0.0014502284528388049  

Root-Mean-Square Error 4.834793617851682  

Mean Standardized Error -0.00018454167290494  

Root-Mean-Square Standardized 

Error 

0.6034000737986222  

Average Standard  Error  8.010678795781427  

1998 CP1 SSPM 72.367*Nugget+121.38*J-

Bessel(3405.2,6.4811) 

PC1 Image in 1991 

PRF 0.782472094908954 * x + 

8.66522076979606 

 

ERF -0.217527905094886 * x + 

8.66522076994925 

 

SERF -0.0249510404101306 * x + 

0.993921693698665 

 

Samples 3209460   

Mean Error -0.0014921951969875885  

Root-Mean-Square Error 4.8357612779715415  

Mean Standardized Error -0.00017422035047323393  

Root-Mean-Square Standardized 

Error 

0.5545741662264446  

Average Standard  Error  8.717762664058569  

1999 CP1 SSPM 62.88*Nugget+121.38*J-

Bessel(3374.7,6.4869) 

PC1 Image in 1991 

PRF 0.782485698055638 * x + 

8.66467297542527 

 

ERF -0.217514301948082 * x + 

8.66467297557441 

 

SERF -0.0267635231075235 * x + 

1.06612641224482 

 

Samples 3209460   

Mean Error -0.0014737771749448352  

Root-Mean-Square Error 4.835009744341121  

Mean Standardized Error -0.00018474176363632915  

Root-Mean-Square Standardized 

Error 

0.5948387374561481  

Average Standard  Error  8.126353188324524  

2000 CP1 SSPM 70.87*Nugget+121.38*J-

Bessel(3390.1,6.4847) 

PC1 Image in 1991 

PRF 0.782473617235265 * x + 

8.66515200127705 

 

ERF -0.217526382768478 * x + 

8.66515200142597 

 

SERF -0.0252121603364036 * x + 

1.00432774922535 

 

Samples 3209460  

Mean Error -0.001488216136760514  

Root-Mean-Square Error 4.835628167509834  

Mean Standardized Error -0.00017561014169653277  

Root-Mean-Square Standardized 

Error 

0.5603845947289107  

Average Standard  Error  8.62712593246869  

2001 CP1 SSPM 64.141*Nugget+121.38*J-

Bessel(3382.3,6.4855) 

PC1 Image in 1991 

PRF 0.782485494414201 * x + 

8.66467662426456 

 

ERF -0.21751450558953 * x + 

8.66467662441265 

 

SERF -0.0264990951312986 * x + 

1.05559536437623 
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Samples 3209460  

Mean Error -0.0014731494647191735  

Root-Mean-Square Error 4.8351287820392885  

Mean Standardized Error -0.00018282399848751105  

Root-Mean-Square Standardized 

Error 

0.5889789262324034  

Average Standard  Error  8.207412043022755  

2002 

 

CP1 SSPM 69.808*Nugget+121.38*J-

Bessel(3386.2,6.4852) 

PC1 Image in 1991 

PRF 0.782472355473317 * x + 

8.66520140189453 

 

ERF -0.217527644530358 * x + 

8.6652014020402 

 

SERF -0.0254027991562895 * x + 

1.01192551726518 

 

Samples 3209460   

Mean Error -0.001488079705035085  

Root-Mean-Square Error 4.835551531112071  

Mean Standardized Error -0.0001769316167655006  

Root-Mean-Square Standardized 

Error 

0.5646208695700107  

Average Standard  Error  8.562257394661494  

2003 CP1 SSPM 65.036*Nugget+121.38*J-

Bessel(3384.3,6.4853) 

PC1 Image in 1991 

PRF 0.782486186389989 * x + 

8.66468110670922 

 

ERF -0.217513813613766 * x + 

8.66468110685723 

 

SERF -0.0263168048917327 * x + 

1.04833145569751 

 

Samples 3209460   

Mean Error -0.0014735721905353844  

Root-Mean-Square Error 4.835204726375911  

Mean Standardized Error -0.00018160361769975432  

Root-Mean-Square Standardized 

Error 

0.584925471074053  

Average Standard  Error  8.264422702639893  

2016 CP1 SSPM 67.451*Nugget+296.47*J-

Bessel(3384.9,6.4853) 

PC1 Image in 1991 

PRF 0.782850935623846 * x + 

8.64984198591374 

 

ERF -0.21714906437995 * x + 

8.64984198606454 

 

SERF -0.0257981582998008 * x + 

1.02765240164243 

 

Samples 3209460  

Mean Error -0.0013296797742065646  

Root-Mean-Square Error 4.829302987949121  

Mean Standardized Error -0.0001620197273095237  

Root-Mean-Square Standardized 

Error 

0.5735859258764888  

Average Standard  Error  8.417173183173139  

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function, ERF: Error 

Regression Function, SERF: Standardized Error Regression Function, PE: Prediction 

Errors, x: observed value 
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Table 16 Calibration of PC1 SSPM with forecasted coefficients between 2015 and 2016 

based on the time series between 1996 and 2003, which will be used in the validation stage. 
Image 

Date 

SSPM KriggingOrdinario Independent Variable 

2015-03-

04 

 

CP1 SSPM 106.94*Nugget+155.35*J-

Bessel(3769.5,7.8181) 

PC1 Image in 2003 

PRF 0.809963487240562 * x + 

4.95130829635777 

 

ERF -0.190036512762404 * x + 

4.95130829643601 

 

SERF -0.017932076069803 * x + 

0.467209745767224 

 

Samples 3209460   

Mean Error 0.0008837443260897917  

Root-Mean-Square Error 3.7707000884257074  

Mean Standardized Error 8.131811541666571e-005  

Root-Mean-Square 

Standardized Error 

0.35576399222682814  

Average Standard  Error  10.597455237491586  

2016-01-

18 

 

CP1 SSPM 108.11*Nugget+157.31*J-

Bessel(3791.7,7.7866) 

PC1 Image in 2003 

PRF 0.809964799096486 * x + 

4.95128369002492 

 

ERF -0.190035200906579 * x + 

4.95128369010575 

 

SERF -0.0178352201504645 * x + 

0.464685003551203 

 

Samples 3209460   

Mean Error 0.0008823213018557619  

Root-Mean-Square Error 3.7707353943426187  

Mean Standardized Error 8.075029911057093e-005  

Root-Mean-Square 

Standardized Error 

0.35384383543414616  

Average Standard  Error  10.65506565229091  

 

Table 17 Validation of the forecasting of PC1 SSPM versus the observed PC1 between 1996 

and 2003 based on the time series between 1986 and 1991 
Image 

Date 

SSPM Statistics Independent Variable 

1996 PRF 23.1465 + 0.423927*x PC1 Image in 1991 

Samples 73  

CC 0.652297  

R
2
 0.425492  

R
2

adjusted 0.417512  

SEE 33.1997  

MAE 27.5367  

DW 1.14484  

1997 PRF 47.0283 + 0.50922*x PC1 Image in 1991 

Samples 84  

CC 0.650279  

R
2
 0.422863  

R
2

adjusted 0.415825  

SEE 30.0122  

MAE 24.507  

DW 1.17082  

1998 PRF 30.7165 + 0.773589*x PC1 Image in 1991 

Samples 54  
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CC 0.615856  

R
2
 0.379279  

R
2

adjusted 0.367342  

SEE 19.0444  

MAE 15.5405  

DW 1.22745  

1999 PRF 41.1855 + 0.836547*x PC1 Image in 1991 

Samples 89  

CC 0.613302  

R
2
 0.37614  

R
2

adjusted 0.368969  

SEE 24.8915  

MAE 21.247  

DW 1.08158  

2000 PRF 22.4994 + 0.881861*x PC1 Image in 1991 

Samples 90  

CC 0.629097  

R
2
 0.395763  

R
2

adjusted 0.388897  

SEE 14.8382  

MAE 12.7754  

DW 0.898675  

2001 PRF 26.8065 + 0.869967*x PC1 Image in 1991 

Samples 173  

CC 0.566345  

R
2
 0.320747  

R
2

adjusted 0.316775  

SEE 26.6568  

MAE 22.2843  

DW 0.913673  

2002 

 

PRF 37.2925 + 0.794873*x PC1 Image in 1991 

Samples 264  

CC 0.645069  

R
2
 0.416114  

R
2

adjusted 0.413886  

SEE 31.7812  

MAE 27.105  

DW 0.892394  

2003 PRF 26.3699 + 0.820973*x PC1 Image in 1991 

Samples 109  

CC 0.628676  

R
2
 0.395234  

R
2

adjusted 0.389582  

SEE 19.3724  

MAE 16.6821  

DW 0.938925  

PRF: Predicted Regression function, CC: Correlation Coefficient, R-squared: Determination 

Coefficient, R
2

adjusted: R-squared (adjusted), SEE: Standard Error of Estimation, MAE: Mean 

absolute error, DWs: Durbin-Watson statistic, x: observed value 
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Table 18 Validation of the forecasting of PC1 SSPM versus the observed PC1 between 2015 

and 2016 based on the time series between 1996 and 2003 
Image 

Date 

SSPM Statistics Independent Variable 

2015-

03-04 

 

PRF 27.4301 + 0.377642*x CP1 Image in 1991 

Samples 361  

CC 0.601136  

R
2
 36.1364  

R
2

adjusted 35.9585  

SEE 2.81384  

MAE 2.11622  

DW 1.42581  

2016-

01-18 

 

PRF 8.02645 + 0.422091*x CP1 Image in 1991 

Samples 241  

CC 0.547798  

R
2
 0.300083  

R
2

adjusted 0.297154   

SEE 2.90821  

MAE 1.86529  

DW 1.25292  

PRF: Predicted Regression function, CC: Correlation Coefficient, R-squared: Determination 

Coefficient, R
2

adjusted: R-squared (adjusted), SEE: Standard Error of Estimation, MAE: Mean 

absolute error, DWs: Durbin-Watson statistic, x: observed value 

 

Table 19 Calibration of PC1 SSPM for 2020 and 2030 with forecasted coefficients based on 

the time series between 1986 and 1991. 
Image 

Date 

SSPM KriggingOrdinario Independent Variable 

2020 

 

CP1 SSPM 67.335*Nugget+121.38*J-

Bessel(3384.8,6.4853) 

PC1 Image in 1991 

PRF 0.782482497946622 * x + 

8.66482580355468 

 

ERF -0.217517502057148 * x + 

8.66482580370286 

 

SERF -0.0258635513022785 * x + 

1.03028148988674 

 

Samples 3209460   

Mean Error -0.001485463979409483  

Root-Mean-Square Error 4.835357224567999  

Mean Standardized Error -0.000179863724460417  

Root-Mean-Square Standardized 

Error 

0.5748706897260144  

Average Standard  Error  8.409246666599419  

2030 

 

CP1 SSPM 67.239*Nugget+121.38*J-

Bessel(3384.8,6.4853) 

PC1 Image in 1991 

PRF 0.782482635336724 * x + 

8.66481780303473 

 

ERF -0.21751736466703 * x + 

8.66481780318602 

 

SERF -0.0258820754738057 * x + 

1.03101973857555 

 

Samples 3209460  

Mean Error -0.0014852792995607186  

Root-Mean-Square Error 4.835350380505459  

Mean Standardized Error -0.0001799718288230623  

Root-Mean-Square Standardized 

Error 

0.5752826014564657  

Average Standard  Error  8.403213221050384  
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Table 20 Calibration of PC1 SSPM for 2020 and 2030 with forecasted coefficients based on 

the time series between 1996 and 2003. 
Image 

Date 

SSPM KriggingOrdinario Independent Variable 

2020 

 

CP1 SSPM 110.16*Nugget+159.1*J-

Bessel(3861.3,7.665) 

PC1 Image in 2003 

PRF 0.812623853936476 * x + 

4.88183978346219 

 

ERF -0.187376146066429 * x + 

4.88183978353553 

 

SERF -0.0174215684751477 * x + 

0.453896626000269 

 

Samples 3209460   

Mean Error 0.0005492010950066949  

Root-Mean-Square Error 3.744097772584058  

Mean Standardized Error 4.898137496795628e-005  

Root-Mean-Square 

Standardized Error 

0.3480647978379873  

Average Standard  Error  10.75548056956617  

2030 

 

CP1 SSPM 122.37*Nugget+186.17*J-

Bessel(4063.9,7.326) 

PC1 Image in 2003 

PRF 0.812621759964613 * x + 

4.88189698850629 

 

ERF -0.187378240038252 * x + 

4.88189698858003 

 

SERF -0.0165303975484998 * x + 

0.430678392744302 

 

Samples 3209460   

Mean Error 0.0005496892571118923  

Root-Mean-Square Error 3.744121163068481  

Mean Standardized Error 4.653493745137874e-005  

Root-Mean-Square 

Standardized Error 

0.33025772645859125  

Average Standard  Error  11.335484639185395  

 

Table 21 Results of the principal components transformation method expressed by the 

difference of the principal component No. 1 based on bitemporal reflectance images as a 

proportion of Change / No Change areas in the Pao river basin from 1986 to 2016; using the 

forecasted PC1 2016 from time series between 1986 and 1991.  The parameters are: C: 

Change, NC: No Change, PAR: Percentage Area Ratio. 
BitemporalImages 1986-2016 1990-2016 2000-2016 2015-2016 

PAR: C 4.94 7.91 8.83 5.85 

PAR: NC 95.05 92.08 91.17 94.14 

 

Table 22 Results of the principal components transformation method expressed by the 

difference of the principal component No. 1 based on bitemporal reflectance images as a 

proportion of Change / No Change areas in the Pao river basin from 1986 to 2016; using the 

forecasted PC1 2016 from time series between 1996 and 2003.  The parameters are: C: 

Change, NC: No Change, PAR: Percentage Area Ratio. 
BitemporalImages 1986-2016 1990-2016 2000-2016 2015-2016 

PAR: C 4.66 7.83 7.65 4.71 

PAR: NC 95.33 92.16 92.34 95.28 
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Table 23 Results of the principal components transformation method expressed by the 

difference of the PC1  based on bitemporal reflectance images as a proportion of Change / 

No Change areas in the Pao river basin from 1986-2016; using the original PC1 2016.  The 

parameters are: C: Change, NC: No Change, PAR: Percentage Area Ratio. 
BitemporalImages 1986-2016 1990-2016 2000-2016 2015-2016 

PAR: C 5.01 7.05 5.13 3.98 

PAR: NC 94.9 92.94 94.86 96.01 

 

Table 24 Results of the difference method of bitemporal reflectance images expressed by the 

proportion of Change / No Change areas in the Pao river basin from 1986-2016. The 

parameters are: C: Change, NC: No Change, PAR: Percentage Area Ratio. 
BitemporalImages 1986-2016 1990-2016 2000-2016 2015-2016 

PAR: C 6.55 8.99 6.49 5.46 

PAR: NC 93.45 91.01 93.51 94.54 

 

Table 25 Results of the method of the ratio of the reflectance images bitemporal expressed by 

the ratio of areas of change / no change in the maps obtained in the basin of the Pao River 

from 1986-2016. The parameters are: C: Change, NC: No Change, PAR: Percent Area 

Ratio. 
BitemporalImages 1986-2016 1990-2016 2000-2016 2015-2016 

PAR: C 2.64 0.71 0.89 0.86 

PAR: NC 97.36 99.29 99.11 99.14 

 

Table 26 Results of forecasted difference CP1 image being the forecasted CP1 based on the 

time series between 1986 and 1991, a) 2020-2016, b) 2030-2016 
BitemporalImages 2020-2016 2030-2016 

PAR: C 5.54 8.14 

PAR: NC 94.45 91.85 

 

Table 27 Results of forecasted difference CP1 image being the forecasted CP1 based on the 

time series between 1986 and 1991, a) 2020-2016, b) 2030-2016 
BitemporalImages 2020-2016 2030-2016 

PAR: C 5.52 8.24 

PAR: NC 94.48 91.75 

 

Table 28 Comparing of forecasting methods of LULC change detection 
Reference

s 

Predictio

n Method 

Type of Model Observed 

Images/Photograph

y/ Time Series 

Satellite/Photograph

y 

Observed 

image for 

validation 

Future 

scenario

s 

Pijanowsk

i et al., 

(2002) 

Neural 

Network 

Multi-Layer 

Perceptron 

(MPL) 

1980 Aerial photography - 2010, 

2020 

Jianping et 

al., (2005) 

Markovian 

chain 

analysis 

 1989, 2001 Landsat Thematic 

Mapper 

 1999, 

2003 

Yin et al., 

(2007)  

Markovian 

chain 

analysis 

 2004, 2005 QuickBird, IKONOS, 

SPOT-5 

 2006 

Hadi et al., 

(2014) 

Markovian 

chain 

analysis 

 2000,  2010 Landsat Thematic 

Mapper 

2010 2030 

Mishra et 

al., (2014) 

Neural 

Network 

Multi-Layer 

Perceptron 

(MPL) 

1988,  2010 Landsat Thematic 

Mapper 

- 2025, 

2035 

Kumar et 

al., (2014) 

Markovian 

chain 

 1998, 2006,  2009 Indian Remote 

Sensing Satellite 

2009 2022 
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analysis (IRS) 

Han et al., 

(2015) 

Markovian 

chain 

analysis 

 1985, 2000, 2010 Landsat Thematic 

Mapper 

2010 2020 

Padonou 

et al 

(2017) 

Markovian 

chain 

analysis 

 1975,  1990, 2010 Landsat Multispectral 

Scanner,  Landsat 

Thematic Mapper, 

Landsat Enhanced 

Thematic Mapper 

plus 

1990,  2010 2050 

This Study Statistical 

Spatial 

Prediction 

Model / 

Forecastin

g Model 

 

J-Bessel/ 

AutoRegressiv

e, Integrated, 

Moving 

Average 

1986,1987,1988,198

9, 

1990,1991 

Landsat Thematic 

Mapper, Landsat 

Enhanced Thematic 

Mapper plus, Landsat 

Operational Land 

Imager 

1996,1997,199

8, 

1999,2000, 

2001, 2002, 

2003, 2015, 

2016 

2020, 

2030 

Statistical 

Spatial 

Prediction 

Model / 

Forecastin

g Model 

 

J-Bessel / 

Brown's linear 

exponential 

smoothing 

1996,1997,1998,199

9, 

2000, 2001, 2002, 

2003 

Landsat Thematic 

Mapper, Landsat 

Enhanced Thematic 

Mapper plus, Landsat 

Operational Land 

Imager 

2015, 2016 2020, 

2030 

  2015, 2016 Landsat Operational 

Land Imager 

2015, 2016  

 


