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Abstract 

To develop real time classification from high throughput of data stream (dynamic data) is 

one of the most challenging areas of big data analysis. In this proposed system we are using 

concept drift. (Changes of the pattern encoded in the stream over time). And imposes unique 

challenges in comparison with real time classification data mining from dynamic data. 

Several real-time classifications of data stream algorithms exist. The proposed system 

highlights the Fixed Width clustering, variable width calculation and global width clustering 

for data stream classifier. The result of these algorithms provides high accuracy, less time & 

high speed. 
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INTRODUCTION 

Big data has 4 properties: Velocity (data 

generated at a quick rate), Volume (very 

giant and probably unknown information 

quantities), Veracity i.e truthfulness 

(uncertainty within the information) and 

Variety (different types of data like text, 

structured information etc.)Previous 

reference paper presents an algorithm that 

addresses the overlap of the Velocity and 

Volume aspects of Big Data Analytics. 

Here the classifier is trained in period on 

incoming tagged information instances in 

data stream classification. The classifier is 

required to accept the changes of concepts 

that can occur over time (known as 

concept drift [4]). Due to dynamic & 

infinite data streams, it becomes difficult 

to capture, store and process the data. 

Hence it has lead to the development and 

publication of data stream classifiers. An 

empirical analysis [15] shows that the 

serial implementation of MC-NN is fast 

and sturdy to noise and concept drifts. 

However, it's restricted by the outturn of 

one machine node. A measurability 

analysis is additionally dole out, 

distinctive insights, difficulties and 

solutions in implementing parallel period 

information stream classifiers. In the 

proposed system FWC, GWC and VWC 

algorithms are used which provide high 

accuracy, less time consumption and fast 

speed. 

 

LITERATURE SURVEY 
As data streams are infinite in length, 

iterative processes cannot be used. If these 

streams are left un-monitored, the 

algorithms would encode on the whole 

stream and neglect ‘Concept Drifts’. 

‘Concepts’ may be thought of as blocks of 

homogeneous/statistically similar 

information in a very linear timeframe. 

Because the length and variety of drifts is 

unknown, the information stream should 

be monitored in period of time. Previously 

Drift Detector Algorithms were used to 

handle these drifts. Examples of Concept 

Drift detectors are DDM [16], ECDD [17] 

and ELM [18]. Typically concept Drift 

detectors work concurrently from specific 

data processing algorithm or say, Data 

mining algorithm. Therefore the algorithm 

must be efficient. However, batch 

algorithms need many passes, it should be 

too slow if knowledge or data is incoming 

at a high speed. Various techniques exist 

to adapt data mining algorithms to 

streaming data, such as sliding window [2] 
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and reservoir sampling [22].  However, 

these techniques would work too slow for 

data incoming at high speed. Other 

techniques such as Hoeffding bound based 

techniques [23] and Micro-Clusters [24] 

have been used to create inherently 

adaptive data stream mining algorithms. 

Hoeffding based techniques aims to form 

and adapt the data processing models that 

applied math edge on the chance that the 

received attribute values deviates from its 

mean value or expected value. The 

Hoeffding bound has been successfully 

used to create various data stream mining 

algorithms known as Very Fast Machine 

Learning (VFDT [25]). Micro-Cluster 

primarily based techniques aim to make a 

applied math outline in terms of feature 

values, worth distribution and time-stamps 

of the information retrieved from the 

stream (CluStream [24], On Demand 

Classification of information Streams 

[26]). Samza can be thought of as a 

simplified ‘pilot job’ [30]. In the pilot 

terminology a Samza job is an ‘early 

bound’ container that will process an 

unknown future workload. The key 

distinction is that a pilot task is known as a 

private with its own work to method, and 

so has no interaction with different tasks. 

Samza containers they need access to all or 

any information more responsible the 

underlying stream till they're stopped 

outwardly. Different alternatives with 

similar practicality include: Apache Storm, 

Spark Streaming and Apache S4 — a 

comparison will be found in [29]. 

 

ALGORITHMS 

Algorithm 1. Fixed-width clustering  

1.  Input: U 

/ * A list of objects,                                      

*/ 

2 Inputs: w 

      /* The predefined radius of cluster       

*/ 

3    C ←φ; C
r
←φ; C

w
←φ; /* A set of 

cluster   and their centroid and width */ 

4   n=0; /* The number of credited clusters 

*/ 

5   foreachjiin U objects do 

6  if n==0 then 

7 n+ = 1; 

8put ji in Cn; put jiin C
r
n; put C

w
n←  0; 

9else 

10 < id, dis>← Closest Cluster (ji, C
r
); 

/* Find the ID and distance of the  

closest cluster to ji       */ 

11 if dis ≤ω then 

12  put jiin Cid; 

13ifC
w

id< dis then 

14C
w

id< dis; 

15 else 

16 n+ = 1; 

17put ji in Cn; put jiin C
r
n; put C

w
n← 0; 

18return [C, C
r
,C

w
]; 

The various-widths clustering part is 

presented, where a data set is partitioned 

off into variety of clusters whose sizes are 

affected by the user defined threshold. 3 

processes are concerned during this 

operation: cluster-width learning, 

partitioning and merging. Then they are 

executed till the factors or conditions are 

met. That is, the processes of partitioning 

and merging are stopped when the size of 

the largest cluster is less than a user-

defined threshold b, or when the number 

of clusters prior to and after the execution 

of the mentioned processes are equal to b. 

Algorithm 2 shows the steps of the 

mentioned processes. 

Let D be a dataset to be clustered and NN 

(H) be the function of k nearest neighbors 

for the item H, clsWidth be another 

function computing the dimension (radius) 

of NN (H), wherever the dimension is 

distance between the item H and therefore 

the farthest object among its neighbors. 

The value of k is set to 50% * |D| to 

guarantee a large cluster. To find the 

appropriate global width, we randomly 

draw a few objects from D, H= {H1, 

H2…Hr} where r<<|D| and for each 

randomly selected object the radius of its k 

nearest neighbours is computed and the 
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average is used as a global width for D as 

follows: 

 

Algorithm 2. Variable Width Clustering 

1 Input : Data 

2 Input :β 

3 Outputs : Clusters 

4 Clusters ← ǿ: add 

(clusters[data,zeros,0]); 

5 Finished ←0; 

6 While finished == 0 do 

7 Cl8,Size ←Clusters.getSize/* 

 The no of clusters*/ 

8 Partitioning(Clusters,β); 

9 Merging(Clusters,β); 

10 If |LargesstCluster(Cluster)|≤β or 

11 Clusters.getSize==ClsSize then 

12 Finished ← 1 

13 Return [Clusters]; 

14 Procedure Partitioning (Clusters,β) 

15      U ← LargestCluster(Clusters); 

16     While |U.objects| > β do 

17     ὠ ← Using eq. (1); 

18      if (w==0) then 

19  U.nonpartitioned(1); 

20        Update(Clusters,U); 

21       Continue; 

22     <tmpClusters> ← 

Algorithm(U,ὠ); 

23 If ClusterNum (tmpClusters) > 1 

then 

24 Remove(clusters,U); 

25       Add (clusters,tmpClusters); 

26       U ← LargestClusters(clusters); 

27 Else 

28 ὠ←ὠ-(ὠ*0.1); 

29 goto line 21 

30         Procedure Merging(Clusters,β); 

31         MergingList ←     ǿ    /* List of 

tuples  < */ 

    /* Childclusterid, parentclusterid */

         

        Foreach U in clusters do 

    Using eq.(2) and eq.(3); 

/* ID of Cluster Contained */ 

32          If j≠0 then 

33          Put<U.getID,j> in merginglist; 

34          While merginglist ≠   ǿ  do 

35          Foreach tuple in merginglist do 

36         <i,j> ← tuple; 

37         If !isParent(merginglist,i) then 

38 Mergeclus(clusters,I,j); 

39      Remove tuple from merginglist; 

 

PROPOSED SYSTEM 

This section explains the proposed system 

in detail. The several modules of the 

system are-  

 

(1) Data preprocessing  

(2) Global width calculation 

(3) Variable width clustering 

(4) Fixed width clustering 

 

The block diagram of proposed system is 

shown as below 

 

 

 
Fig 1. Block diagram 
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The brief description of each component 

of proposed system is described as 

follows: 

A. Data Preprocessing 

In data processing, the unwanted values, 

null values, stop words, noise, unwanted 

spaces are removed and data is cleaned. 

Then this cleaned data is sent to next block 

as input. 

B. Global width calculation 

Various clusters are formed based on 

different centroids. Every cluster then 

calculates its n neighbors and again a new 

cluster is formed. 

C. Variable width clustering 

The various-widths clustering part is 

presented, where a data set is partitioned 

into a number of clusters whose sizes are 

constrained by the user-defined threshold. 

Three processes are concerned during this 

operation: cluster-width learning, 

partitioning and merging. Then they are 

executed till the factors or conditions are 

met. That is, the processes of partitioning 

and merging are stopped once the 

dimensions of the most important cluster is 

a smaller amount than a user-defined 

threshold B, or once the previous quantity 

of clusters and when the execution of the 

mentioned processes are equal to B. 

D. Fixed width clustering 

In this algorithm, the various centroids are 

calculated after clusters are formed. Then 

these centroids are updated as new clusters 

get created. 

 

GRAPHICAL USER INTERFACE  

 
Fig 2. GUI of Proposed system 

 

RESULT ANALYSIS 
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CHALLENGES 

Fixed width clustering (FWC) algorithm 

takes more time in searching the points 

and clustering them. This reduces the 

performance and results in high time 

complexity. VWC algorithm calculates 

different cluster width on dense clusters 

created.As the points are dense in nature, 

searching time becomes fast. Hence 

overall time is reduced. 

.   

CONCLUSION 

 

As the previous algorithms like FWC took 

more time in searching the points, time 

complexity was high and hence affected 

the performance. To overcome this, new 

algorithm is implemented i.e. VWC – 

Variable Width Clustering.  
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