

1 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

Dynamic Real-time Classification of Data Streams

Mohini Patil, Dnyandev Bagul, Mayur Indrekar, Shraddha Pawar
Computer Engineering Department, K. K.W. I. E. E. R, Nashik, Maharashtra, India.

Email: mohini.patil1412@gmail.com, mayur.indrekar07@gmail.com

Abstract

To develop real time classification from high throughput of data stream (dynamic data) is

one of the most challenging areas of big data analysis. In this proposed system we are using

concept drift. (Changes of the pattern encoded in the stream over time). And imposes unique

challenges in comparison with real time classification data mining from dynamic data.

Several real-time classifications of data stream algorithms exist. The proposed system

highlights the Fixed Width clustering, variable width calculation and global width clustering

for data stream classifier. The result of these algorithms provides high accuracy, less time &

high speed.

Keywords: Data preprocessing, Global Width clustering, Fixed width clustering, Variable

width clustering

INTRODUCTION

Big data has 4 properties: Velocity (data

generated at a quick rate), Volume (very

giant and probably unknown information

quantities), Veracity i.e truthfulness

(uncertainty within the information) and

Variety (different types of data like text,

structured information etc.)Previous

reference paper presents an algorithm that

addresses the overlap of the Velocity and

Volume aspects of Big Data Analytics.

Here the classifier is trained in period on

incoming tagged information instances in

data stream classification. The classifier is

required to accept the changes of concepts

that can occur over time (known as

concept drift [4]). Due to dynamic &

infinite data streams, it becomes difficult

to capture, store and process the data.

Hence it has lead to the development and

publication of data stream classifiers. An

empirical analysis [15] shows that the

serial implementation of MC-NN is fast

and sturdy to noise and concept drifts.

However, it's restricted by the outturn of

one machine node. A measurability

analysis is additionally dole out,

distinctive insights, difficulties and

solutions in implementing parallel period

information stream classifiers. In the

proposed system FWC, GWC and VWC

algorithms are used which provide high

accuracy, less time consumption and fast

speed.

LITERATURE SURVEY
As data streams are infinite in length,

iterative processes cannot be used. If these

streams are left un-monitored, the

algorithms would encode on the whole

stream and neglect ‘Concept Drifts’.

‘Concepts’ may be thought of as blocks of

homogeneous/statistically similar

information in a very linear timeframe.

Because the length and variety of drifts is

unknown, the information stream should

be monitored in period of time. Previously

Drift Detector Algorithms were used to

handle these drifts. Examples of Concept

Drift detectors are DDM [16], ECDD [17]

and ELM [18]. Typically concept Drift

detectors work concurrently from specific

data processing algorithm or say, Data

mining algorithm. Therefore the algorithm

must be efficient. However, batch

algorithms need many passes, it should be

too slow if knowledge or data is incoming

at a high speed. Various techniques exist

to adapt data mining algorithms to

streaming data, such as sliding window [2]

2 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

and reservoir sampling [22]. However,

these techniques would work too slow for

data incoming at high speed. Other

techniques such as Hoeffding bound based

techniques [23] and Micro-Clusters [24]

have been used to create inherently

adaptive data stream mining algorithms.

Hoeffding based techniques aims to form

and adapt the data processing models that

applied math edge on the chance that the

received attribute values deviates from its

mean value or expected value. The

Hoeffding bound has been successfully

used to create various data stream mining

algorithms known as Very Fast Machine

Learning (VFDT [25]). Micro-Cluster

primarily based techniques aim to make a

applied math outline in terms of feature

values, worth distribution and time-stamps

of the information retrieved from the

stream (CluStream [24], On Demand

Classification of information Streams

[26]). Samza can be thought of as a

simplified ‘pilot job’ [30]. In the pilot

terminology a Samza job is an ‘early

bound’ container that will process an

unknown future workload. The key

distinction is that a pilot task is known as a

private with its own work to method, and

so has no interaction with different tasks.

Samza containers they need access to all or

any information more responsible the

underlying stream till they're stopped

outwardly. Different alternatives with

similar practicality include: Apache Storm,

Spark Streaming and Apache S4 — a

comparison will be found in [29].

ALGORITHMS

Algorithm 1. Fixed-width clustering

1. Input: U

/ * A list of objects,

*/

2 Inputs: w

 /* The predefined radius of cluster

*/

3 C ←φ; C
r
←φ; C

w
←φ; /* A set of

cluster and their centroid and width */

4 n=0; /* The number of credited clusters

*/

5 foreachjiin U objects do

6 if n==0 then

7 n+ = 1;

8put ji in Cn; put jiin C
r
n; put C

w
n← 0;

9else

10 < id, dis>← Closest Cluster (ji, C
r
);

/* Find the ID and distance of the

closest cluster to ji */

11 if dis ≤ω then

12 put jiin Cid;

13ifC
w

id< dis then

14C
w

id< dis;

15 else

16 n+ = 1;

17put ji in Cn; put jiin C
r
n; put C

w
n← 0;

18return [C, C
r
,C

w
];

The various-widths clustering part is

presented, where a data set is partitioned

off into variety of clusters whose sizes are

affected by the user defined threshold. 3

processes are concerned during this

operation: cluster-width learning,

partitioning and merging. Then they are

executed till the factors or conditions are

met. That is, the processes of partitioning

and merging are stopped when the size of

the largest cluster is less than a user-

defined threshold b, or when the number

of clusters prior to and after the execution

of the mentioned processes are equal to b.

Algorithm 2 shows the steps of the

mentioned processes.

Let D be a dataset to be clustered and NN

(H) be the function of k nearest neighbors

for the item H, clsWidth be another

function computing the dimension (radius)

of NN (H), wherever the dimension is

distance between the item H and therefore

the farthest object among its neighbors.

The value of k is set to 50% * |D| to

guarantee a large cluster. To find the

appropriate global width, we randomly

draw a few objects from D, H= {H1,

H2…Hr} where r<<|D| and for each

randomly selected object the radius of its k

nearest neighbours is computed and the

3 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

average is used as a global width for D as

follows:

Algorithm 2. Variable Width Clustering

1 Input : Data

2 Input :β

3 Outputs : Clusters

4 Clusters ← ǿ: add

(clusters[data,zeros,0]);

5 Finished ←0;

6 While finished == 0 do

7 Cl8,Size ←Clusters.getSize/*

 The no of clusters*/

8 Partitioning(Clusters,β);

9 Merging(Clusters,β);

10 If |LargesstCluster(Cluster)|≤β or

11 Clusters.getSize==ClsSize then

12 Finished ← 1

13 Return [Clusters];

14 Procedure Partitioning (Clusters,β)

15 U ← LargestCluster(Clusters);

16 While |U.objects| > β do

17 ὠ ← Using eq. (1);

18 if (w==0) then

19 U.nonpartitioned(1);

20 Update(Clusters,U);

21 Continue;

22 <tmpClusters> ←

Algorithm(U,ὠ);

23 If ClusterNum (tmpClusters) > 1

then

24 Remove(clusters,U);

25 Add (clusters,tmpClusters);

26 U ← LargestClusters(clusters);

27 Else

28 ὠ←ὠ-(ὠ*0.1);

29 goto line 21

30 Procedure Merging(Clusters,β);

31 MergingList ← ǿ /* List of

tuples < */

 /* Childclusterid, parentclusterid */

 Foreach U in clusters do

 Using eq.(2) and eq.(3);

/* ID of Cluster Contained */

32 If j≠0 then

33 Put<U.getID,j> in merginglist;

34 While merginglist ≠ ǿ do

35 Foreach tuple in merginglist do

36 <i,j> ← tuple;

37 If !isParent(merginglist,i) then

38 Mergeclus(clusters,I,j);

39 Remove tuple from merginglist;

PROPOSED SYSTEM

This section explains the proposed system

in detail. The several modules of the

system are-

(1) Data preprocessing

(2) Global width calculation

(3) Variable width clustering

(4) Fixed width clustering

The block diagram of proposed system is

shown as below

Fig 1. Block diagram

4 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

The brief description of each component

of proposed system is described as

follows:

A. Data Preprocessing

In data processing, the unwanted values,

null values, stop words, noise, unwanted

spaces are removed and data is cleaned.

Then this cleaned data is sent to next block

as input.

B. Global width calculation

Various clusters are formed based on

different centroids. Every cluster then

calculates its n neighbors and again a new

cluster is formed.

C. Variable width clustering

The various-widths clustering part is

presented, where a data set is partitioned

into a number of clusters whose sizes are

constrained by the user-defined threshold.

Three processes are concerned during this

operation: cluster-width learning,

partitioning and merging. Then they are

executed till the factors or conditions are

met. That is, the processes of partitioning

and merging are stopped once the

dimensions of the most important cluster is

a smaller amount than a user-defined

threshold B, or once the previous quantity

of clusters and when the execution of the

mentioned processes are equal to B.

D. Fixed width clustering

In this algorithm, the various centroids are

calculated after clusters are formed. Then

these centroids are updated as new clusters

get created.

GRAPHICAL USER INTERFACE

Fig 2. GUI of Proposed system

RESULT ANALYSIS

5 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

CHALLENGES

Fixed width clustering (FWC) algorithm

takes more time in searching the points

and clustering them. This reduces the

performance and results in high time

complexity. VWC algorithm calculates

different cluster width on dense clusters

created.As the points are dense in nature,

searching time becomes fast. Hence

overall time is reduced.

.

CONCLUSION

As the previous algorithms like FWC took

more time in searching the points, time

complexity was high and hence affected

the performance. To overcome this, new

algorithm is implemented i.e. VWC –

Variable Width Clustering.

REFERENCES

1. M. Ebbers, A. Abdel-Gayed, V. Budhi,

F. Dolot, Addressing Data Volume,

Velocity, and Variety with IBM

InfoSphere Streams V3.0, 2013.

2. B. Babcock, S. Babu, M. Datar, R.

Motwani, J. Widom, Models and

issues in data stream systems, in:

PODS, 2002, pp. 1–16.

3. M.M. Gaber, A. Zaslavsky, S.

Krishnaswamy, Mining data streams: a

review, ACM SIGMOD Rec. 34

(2005) 18–26.

4. M. Gaber, A. Zaslavsky, S.

Krishnaswamy, A survey of

classification methods in data streams,

Data Streams (2007) 39–59.

5. J. Gama, Knowledge Discovery from

Data Streams, Chapman and Hall /

CRC, 2010.

6. T. Bujlow, T. Riaz, J. Pedersen, A

method for classification of network

traffic based on c5.0 machine learning

algorithm, in: 2012 International

Conference on Computing,

Networking and Communications,

ICNC, 2012, pp. 237–241.

7. A. Jadhav, A. Jadhav, P. Jadhav, P.

Kulkarni, A novel approach for the

design of network intrusion detection

system (NIDS), in: 2013 International

Conference on Sensor Network

Security Technology and Privacy

Communication System, SNS PCS,

2013, pp. 22–27.

8. A. Salazar, G. Safont, A. Soriano, L.

Vergara, Automatic credit card fraud

detection based on non-linear signal

processing, in: 2012 IEEE

International Carnahan Conference on

Security Technology, ICCST, 2012,

pp. 207–212.

9. P. Domingos, G. Hulten, Mining high-

speed data streams, in: Proceedings of

the Sixth ACM SIGKDD International

Conference on Knowledge Discovery

and Data Mining, KDD’00, ACM,

New York, NY, USA, 2000, pp. 71–

80.

10. T. Le, F. Stahl, J.B. Gomes, M.M.

Gaber, G.D. Fatta, Computationally

efficient rule-based classification for

continuous streaming data, in:

Research and Development in

Intelligent Systems XXXI, Springer

International Publishing, 2014, pp. 21–

34. M. Tennant et al. / Future

Generation Computer Systems 75

(2017) 187–199 199

11. J.a. Gama, P. Kosina, Learning

decision rules from data streams, in:

Proceedings of the Twenty-Second

International Joint Conference on

Artificial Intelligence - Volume

Volume Two, IJCAI’11, AAAI Press,

2011, pp. 1255–1260.

12. Y. Ben-Haim, E. Tom-Tov, A

streaming parallel decision tree

algorithm, J. Mach. Learn. Res. 11

(2010) 849–872.

13. G.D.F. Morales, A. Bifet, Samoa:

Scalable advanced massive online

analysis, J. Mach. Learn. Res. 16

(2015) 149–153.

14. A. Andrzejak, J. Gomes, Parallel

concept drift detection with online map

reduce, in: 2012 IEEE 12th

International Conference on Data

6 Page 1-6 © MAT Journals 2018. All Rights Reserved

Journal of Computer Science Engineering and Software Testing

Volume 4 Issue 2

Mining Workshops, ICDMW, 2012,

402–407.

http://dx.doi.org/10.1109/ICDMW.201

2.102.

15. M. Tennant, F. Stahl, J. Gomes, Fast

adaptive real-time classification for

data streams with concept drift, in:

Internet and Distributed Computing

Systems, in: Lecture Notes in

Computer Science, vol. 9258, Springer

International Publishing, 2015, pp.

265–272.

16. J. Gama, P. Medas, G. Castillo, P.

Rodrigues, Learning with drift

detection, in: Advances in Artificial

Intelligence–SBIA 2004, Springer

Berlin, Heidelberg, 2004, pp. 286–295.

17. G.J. Ross, N.M. Adams, D.K.

Tasoulis, D.J. Hand, Exponentially

weighted moving average charts for

detecting concept drift, Pattern

Recognit. Lett. 33 (2) (2012) 191–198.

http://dx.doi.org/10.1016/j.patrec.2011.

08.019.

18. R. Cavalcante, A. Oliveira, An

approach to handle concept drift in

financial time series based on extreme

learning machines and explicit drift

detection, in: 2015 International Joint

Conference on Neural Networks,

IJCNN, 2015, pp. 1–8.

http://dx.doi.org/10.1109/IJCNN.2015.

7280721.

19. R.J. Quinlan, C4.5: Programs for

Machine Learning, Morgan Kaufmann,

1993.

20. C. Cortes, V. Vapnik, Support-vector

networks, Mach. Learn. 20 (3) (1995)

273–297.

http://dx.doi.org/10.1023/A:10226274

11411.

21. M.A. Bramer, Automatic induction of

classification rules from examples

using N-Prism, in: Research and

Development in Intelligent Systems

XVI, Springer- Verlag, Cambridge,

2000, pp. 99–121.

22. J. Han, M. Kamber, Data Mining:

Concepts and Techniques, Morgan

Kaufmann, 2001.

23. P. Domingos, G. Hulten, A general

framework for mining massive data

streams, J. Comput. Graph. Stat. 12

(2008).

24. C. Aggarwal, J. Han, J. Wang, P. Yu,

A framework for clustering evolving

data streams, in: Proceedings of the

29th VLDB Conference, Berlin

Germany, 2003.

25. P. Domingos, G. Hulten, Mining high-

speed data streams, in: KDD, 2000, pp.

71–80.

26. C.C. Aggarwal, J. Han, J. Wang, P.S.

Yu, A framework for on-demand

classification of evolving data streams,

IEEE Trans. Knowl. Data Eng. 18 (5)

(2006) 577–589.

27. Esper

(http://www.espertech.com/esper/seen

November 2015).

28. Samza (https://samza.apache.org/seen

November 2015).

29. R. Ranjan, Streaming big data

processing in datacenter clouds, IEEE

Cloud Comput. 1 (1) (2014) 78–83.

http://dx.doi.org/10.1109/MCC.2014.2

2.

30. M. Turilli, M. Santcroos, S. Jha, A

comprehensive perspective on the

pilot-job abstraction, CoRR

abs/1508.04180. URL

http://arxiv.org/abs/1508.04180.

