

1 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

CORFOOS: Cost Reduction Framework for Object Oriented System

 Vedpal, Naresh Chauhan

Department of Computer Engineering, YMCA University of Science & Technology,

Faridabad, India

Email: ved_ymca@yahoo.co.in, nareshchauhan19@gmail.com

Abstract

There are many constraints in developing software for an organization, such as time and

budget. Due to these constraints and intricacies of advanced software development

technology, it has become very challenging to complete such projects. To make these projects

cost-effective, this paper presents a cost reduction framework (CORFOOS) which works at

three levels. At the first level, Intermediate Requirement Dependency Value (IRDV) of each

requirement is determined by creating the intermediate requirements dependency graph

(IRDG). At the second level, the requirements are categorised and finally at the third level,

the testing parameters are determined by analyzing the requirements. To analyze the

requirements, the dependency model, interaction model, language specification model and

fault model are used.

Keywords: Testing of object oriented software, cost reduction, testing efforts, software

testing, framework for cost reduction

INTRODUCTION

Software development is very challenging

now days due to advancement in

technologies. Availability of different

software with multiple features has raised

the expectations of users. In order to

satisfy the client expectations, developers

need to incorporate complex software

enhancements. Nowadays, many people

have got used to the convenience of using

online applications for their routine work

like shopping, money transfer, ticket

booking, etc.

So, due to complexity of software needed

to satisfy different requirements of the

user, testing of software has also become

quite complex. Effective software testing

consumes more resources including time

and increases the overall cost of software

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

mailto:ved_ymca@yahoo.co.in,
mailto:nareshchauhan19@gmail.com
http://www.novapdf.com/
http://www.novapdf.com/

2 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

development. Various researchers have

presented many techniques for reduction

of testing- cost. The studies show that if

the faults are not fixed in their early phase,

more cost is incurred to fix the faults in

the later phases. Software maintenance

phase is an expensive phase as it incurs an

approximate 60% of the total cost of

software development.

The researchers showed that regression

testing takes almost 80% of the budget

allocated for testing and up to 50% of the

budget for software maintenance [1]. So,

for reduction of testing cost the software

must be developed in a way that it is open

for extension but closed for modification,

and there is less chance of changes in

requirement so that the resultant

alterations do not push the cost up. The

various constraints in software

development that need to be factored in

for controlling costs are budget, time,

quality, risk etc.

According to finding of sixth world

quality report, average spending on QA as

a percentage of the total IT budget has

risen from 18% in 2012 and 23% in 2013

to 26% in 2014 [2]. The share of testing

budget is expected to reach 29% by 2017.

Due to increase of testing cost in software

development, there is a need for a

technique or a framework for reduction of

testing cost. With that objective, a cost

reduction framework for object oriented

software is presented in this paper. This

framework works at three levels. In the

first level, an analysis of requirements is

performed and the dependency values of

all the requirements are determined. In the

second level, proposed requirements are

mapped with past implemented

requirements. In the third level, the testing

parameters of requirements are determined

by analysing the requirements using

models.

RELATED WORK

Samaila Musa et al. presented a

framework for regression testing of object

oriented software [3]. They used the

System dependency graph model to detect

changes in the method of a program which

occurs due to data dependency, control

dependency and dependency caused by

object relations. For verification of any

statement, slicing is performed on a

constructed graph.

Yves Le Traon et al. presented a

methodology for integration planning and

regression testing of objects oriented

software [4]. For the purpose of

regression testing and integration, the

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

3 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

classes are ordered on the basis of the

proposed model.

Recardo Terra and Macro Tulio Valente

presented domain specific language to

restrict the spectrum of dependencies that

are allowed in object oriented system [5].

They also explained a checking tool. The

violations of proposed constraints are

detected by this tool.

Sunil L. Bangare et al. proposed a metric

for object oriented software for measuring

the quality of modularization [6].

Michela Pedroni et al. analyzed the

dependency structure of the object

oriented concept [7]. By an analysis of the

dependency structure, they found that

basic object oriented concepts are tightly

interrelated.

Ranjita kumara swain et al. proposed an

approach for generating the test data [8].

They first created the transition graph

from the state chart diagram. The test

cases are generated by extracting the

required information from the state chart.

Amaranth Singh et al. presented a metric

which helps to identify the critical

elements [9]. They used intermediate

graph representation of a program. The

influence of class is found out through a

forward slice of the graph.

Xiaolan Wang et al. presented a method to

make dependency graph of the error

statement [10]. The proposed method is

based on the symbolic execution and

constraint solving. It can be used in

different systems and is able to detect

errors in different languages.

R. Krishnamoorthi et al. proposed a model

for prioritizing the system test cases by

considering six factors, which are

customer priority, implementation

complexity, completeness, traceability,

and fault impact [11]. They validated the

proposed model with two different

validated techniques and experimented

with some projects.

Varun Gupta et al. presented dynamic

cohesion metrics [12]. The introduced

metrics provide the scope for

measurement of cohesion up to class level.

Their analysis was based on application of

the proposed dynamic cohesion metrics on

20 Java programs and found that dynamic

cohesion metrics are more accurate and

useful.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

4 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

PROPOSED FRAMEWORK

The proposed framework works at four

levels. At the first level, requirements are

analyzed and a requirement dependency

graph is plotted. By using the requirement

dependency graph a requirement

dependency metric will be created that

shows dependency value of requirements.

There may be some requirements which

are already implemented by the

organization. In the second level, all the

requirements are mapped with the past

implemented requirements. After

mapping, requirements will be divided

into three categories: partial modified

requirements, unmodified requirements

and new requirements.

By using requirement dependency metric,

dependency of unmodified requirement is

determined. If the dependency of

unmodified requirements is zero, there is

no need to test them. But if the

dependency value of requirement is non

zero, then suitable testing strategy is

required to test the requirements. The test

cases are selected from the previously

tested cases. In the case of partial

modified requirements, an appropriate

regression technique is applied to identify

the affected part of requirements and for

testing of requirements as a whole.

For the new requirements three models are

used: dependency model, interaction

model and Language specification model.

After analysis of these models, complexity

of new requirements and the faulty model

of requirement are determined. By using

the identified complexities and faulty

model, the requirements are prioritized

and suitable testing strategy is selected as

shown in Figure 1.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

5 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Fig.1: Framework for Cost Reduction.

REQUIREMENT ANALYSIS AND

REQUIREMENT DEPENDENCY

GRAPH

In this phase, an analysis of requirements

is performed first of all. The analysis of

requirements is performed for identifying

the purpose of developing the software.

After analysing the requirements, an

intermediate graph for determining the

dependencies between the requirements is

Requirement dependency
graph

Requirement Analysis

Mapping with the past
implemented
requirements

Partial modified
requirements

Unmodified
Requirements (Un)

New Requirement

 Is

Dep(Un)=0

Testing not required

Dependency
model

Apply regression
technique

Select required test cases
from previous test pool

Interaction
 model

Language
specification
model

Fault model
Complexity of
requiremnts

Requirement
Prioritization andTesting
strategy

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

6 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

constructed. In the intermediate

requirement dependency graph (IRDG),

the requirements are denoted by the node

and dependencies between the

requirements are shown by the directional

edges. After constructing the IRDG,

degree of each node is counted. The

degree of each node is the sum of in

degree and out degree of a node. This

degree of requirements is termed as

intermediate requirement dependency

value (IRDV). In this way, the

intermediate requirement dependency

value (IRDV) metric forms using IRDG.

PARTITION OF REQUIREMENTS

BY MAPPING THEM WITH PAST

IMPLEMENTED REQUIREMENTS

In this phase, the requirements are mapped

with past implemented requirements.

Mapping is based on functionality and

implementation platform of a requirement.

After mapping, the requirements are

categorised as new, partially modified or

unmodified.

 New Requirements are the emerging

requirements which are never

implemented by the organization.

 Partially Modified Requirements are

those requirements which were

implemented earlier by the

organization, but now there is a scope

for quite a few changes.

 Unmodified Requirements are those

requirements that are implemented

without any changes.

Let R be a set of requirements, such that

R = {R1, R2, R3, R4, R5, R6, R7, R8, R9}

Set Pr is a set of partial modified

requirements, Ur is set of unmodified

requirements and Nr is the set of new

requirements, such that

Pr= {R1, R4, R5}, Ur = {R5, R8, R9},

Nr = {R2, R3, R6}

 U

IDENTIFICATION OF CRITICAL

REQUIREMENTS

By using the IRDV, any dependency of

unmodified requirement is identified. If no

dependency of unmodified requirement is

New Requirement (Nr)

Unmodified Requirements (Ur) Partial modified Requirements (Pr)

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

7 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

found, then there is no need to test them.

But if dependency is found, then these

requirements are put in a pool of

requirements to be tested and mapped with

the fault model of past implemented

requirements.

COMPLEXITY OF REQUIREMENT

To find out the complexity of

requirements, three models namely

Dependency model, Interaction model and

Language Specification model are used to

calculate the testing parameters of

requirements. Higher the scale of testing

parameters, more are the chances of errors

to occur. By using these models, the

developer can identify the types of errors

that might occur. Testers are able to design

test cases and developer can code the

requirements on the basis of these test

cases as well as expected faults. This type

of coding helps the developer to avoid

these faults from occurring.

Dependency Model: It helps to detect the

structural dependency. Software architects

always specify a set of structural

constraints for the target system. Source

code and related information like classes,

sequence diagram and high level modules

such as package and component diagram

must be analysed by the architects.

Analysis of dependency includes the

control dependency of the program, data

dependency and dependency between the

classes, method to class, method to

method, polymorphism interdependency,

implementation dependency, contractual

dependency, dependency of program on

external system call, functional

dependency, etc. The control dependency

covers exception handling, multithreading

and synchronization. The data dependency

model helps to identify the cohesion of

each class and coupling between the

classes which helps to determine the

complexity of the programme.

Interaction Model: Interaction model is

used to identify the different types of

interactions presented in the program. As

object oriented language provides various

features such as inheritance,

polymorphism, message passing, and

encapsulation, it is complicated and prone

to errors. By using the interaction model,

different types of interactions between the

programs are identified. The interaction

model describes the communication

between the classes. The classes

communicate to each other by passing

messages. These messages represent the

interaction between the objects. There are

various types of messages in object

oriented language as shown in Table 1.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

8 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

Table 1. Types of Messages and Interaction in Object Oriented Language.

Message Interaction

Simple Message Interaction between the classes

Synchronous Message Interaction between the classes and interface

Asynchronous Message
Interaction between the different objects of the

program

Reflexive message
Interaction between the program and native

method

Return message
Interaction between the classes and distributed

class

Language Specification Model:

Language specification model explains the

model of the language used for

implementing the requirements. It helps to

identify the specified feature of language

that is going to be used. Every language

has a set of rules to use the various

features of the language. If the specified

rules for use of feature are not followed,

then it will become a source of error.

Using this model helps the designer to find

out which features should be used to

implement the requirements for getting a

quality product. The language

specification model also shows which

feature is prone to error and the steps to

follow for using the feature in an efficient

and error free manner.

Fault Model: The fault model is used to

determine types of faults which are usually

found during testing. The fault model

shows the types of fault and reason of the

faults in the software. By using the fault

model, the developer or tester can analyze

the software and take the required steps

for reducing the faults.

OBJECT ORIENTED DESIGN

PRINCIPLE [13]

 Single Responsibility Principle: A class

should be designed only for a single

responsibility because each responsibility

is a cause of changes in a class. The

classes become large and complex if many

responsibilities are handled by a single

class. For avoiding this situation, it is

mandatory to ensure that the code is

simple.

 Open Closed Principle: Software entities

like classes and modules should be

designed in such a way that they are open

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

9 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

for extension and closed for modification.

All new functionality should be added in

the code by adding a subclass to the

existing class without making any change

in existing classes.

 Liskov Substitution Principle: The

instance of super class is replaced by

the instance of the derived class. If this

is not followed, the class hierarchies

become messy.

 Interface Segregation Principle: The

class should depend on the smallest

possible interface.

 Dependency Inversion Principle:

Modules that implement the high level

policy should be dependent on a well-

defined interface rather than on

modules that implement low level

polices.

 Principle of Package Cohesion: If the

classes are changed or reused at the

same time, only then they should be

grouped together, otherwise they

should not be grouped together.

Using the abovementioned models helps

to identify the testing effort of each

requirement by as complexity of the

requirements is calculated based on them.

More the complexity of the requirement,

more the effort required for testing; which

increases the cost of testing too. Testing

effort of a requirement can be calculated

by incorporating the following factors:

1. No. of classes

2. Level of inheritance

3. No. of attributes used in each class

4. No. of methods used

5. No. of native methods used

6. External system call

7. Import of the package and API

8. No. of wrapper classes used

9. Multiple inheritance used

10. Method overloading and method

overriding

11. Nested Classes

12. Expected Fault

Testing effort can be calculated by the

following formula -

 n

Testing effort (TE) = ∑(fvalueij* fweightj)

 j=1

------------------------------ (1)

where fvalue is the value assigned to the

considered factors and fweight is the

weight assigned to the factors, and the

weight is assigned based on the criticality

of the factor. Factor criticality indicates

the probability of error that different

factors contribute. More the factor weight

more the chances of errors to be

introduced by the factors.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

10 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

The requirements are prioritized and tested

based on the calculated testing efforts.

Value of testing efforts shows the

complexity of the requirement.

RESULT AND ANALYSIS

Due to constraints of resources, the

proposed approach is validated by

applying it on the following given

requirements of a project. The

requirements dependency graph is shown

in Figure 2.

Fig.2: Intermediate Requirement Dependency Graph.

As shown in Figure 2, there are 10 requirements. The requirements R2 and R3 are the

independent requirements. The requirements and their dependency value are shown in Table

2. Table 2: Intermediate Requirements Dependency Value.

S. No. Requirements IRDV

1 R1 7

2 R2 0

3 R3 4

4 R4 0

5 R5 3

6 R6 2

7 R7 2

8 R8 1

9 R9 1

R1

R3

R7

R10

R5

R8

R6

R2

R6 R9

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

11 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

10 R10 2

For validation of the proposed

requirements, partition of the requirements

are shown below –

Un = R2, R4 Nr = R1, R3, R4, R5, R8 Pr

= R6, R9, R10

Since the requirement set Nr is the set of

new requirements that are implemented

for the first time by the organisation, these

should be analysed by applying three

models: interaction model, dependency

model and language specification model

and be prioritized accordingly.

Suppose X be the total cost to test each

requirement and Y be the cost incurred in

regression testing of the software. Before

applying the CORFOOS, total cost to test

all the requirements will be 10 X.

After applying the proposed framework,

the findings are:

1. The requirements R2 and R4 are the

independent requirements so the

testing cost of these requirements will

be zero. So there is no need to test

them.

2. The requirements R6, R9, R10 are

partial modified, so cost incurred to

test the partial modified requirements

will be 3Y.

3. The Requirements R1,R3,R4,R5,R8

are new requirements and so, their

testing cost will be 5X

So, after applying CORFOOS, total cost to

test all requirements of the projects are 5X

+ 3Y where Y < X

If we do not apply the framework

proposed above, then total cost to test all

the requirements will be 10 X, which is

greater than the cost estimated by applying

the proposed approach, which are 5X –

3Y.

CONCLUSION

The proposed framework (CORFOOS)

will work in three levels. At the first level,

the Intermediate requirements dependency

metric has been created. At the second

level, the requirements are divided in three

categories. In the third level, the testing

efforts of the requirements are calculated

and testing involves choosing various

testing techniques. The proposed

framework is validated by making some

assumptions. It will help in reducing the

testing cost of the software. When applied

on software development projects, this

framework can deliver cost-effective and

quality work.

REFERENCES

1. G. Rothermel, M,j. Harrold, A safe
efficient regression test selection
technique,” ACM Transactions on

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.novapdf.com/
http://www.novapdf.com/

12 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

software engineering Methodology
1997; 6(2): 173–210p.

2. Capgemini world quality report
2014 Hester Decouz
www.worldqualityreport.com.

3. Samaila Musa, Abu Bakar M. D.

Sultan, Azim Abd Ghani, Dr.

Salmi Bahrom. “Regressiong

testing framework based on

extended system Dependence

graph for

object oriented programs” Proc. Of

the intl. Conf. On advances in

computer science

& electronics engineering –
CSEE2014.

4. Yves Le Traon, Thierry Jeron,
Jean- Marc Jezequel, and Pierre
Morel “Efficient Object oriented
integration and regression testing”
IEEE Transactions on reliability,
2000; 49(1).

5. Recardo Terra and Macro Tulio “A
dependency constraints language to
manage Object oriented software
architectures” Software Practice
and Experience 2009; 39: 1073–
1094p. Willy interscience DOI:
10.1002/spe.931.

6. Sunil L. Bangare, Akhil R Khare
and Pallavi S. Bangare “
Measuring the Quality of Object
oriented software modularization”
International Journal of computer
science and engineering (IJCSE).

7. Michela Pedroni and Bertrand
Meyer Object-oriented modelling
of Object-Oriented Concepts A
Case Study in Structuring an
Educational Domain

http://link.springer.com/chapter/10.
1007/978-3-642-11376-
5_15#page-1.

8. Ranjita Kumar Swain, Prafulla
Kumar Behera and Durga Prasad
Mohapatra Generation and
optimization of test cases for object
orinetd software using state chart
diagram
http://arxiv.org/ftp/arxiv/papers/12
06/1206.0373.pdf.

9. Amarnath singh, Biswajit
Bishoyee, santosh kumar rath and
Dharmananda Parida “
International journal of computer
science and information
technologies, 2011; 2(5): 2055–
2059p.

10. Xiaolan wang, Yanshuai Zhang
and Hong he “ Method of the
object oriented Programs Exact
testing Proceedings of the Second
Symposium International
Computer Science and
Computational Technology
(ISCSCT ’09) Huangshan, P. R.
China, 2009; 26–28p.

11. R Krishnamoorthi, S. A. Sahaaya
Arul Mary Factor oriented
requirement coverage based
system test case prioritization of
new and regression test cases.
Information and Software
Technology 51. 2009; 799–808p.

12. Varun Gupta and Jitender kumar
Chhabra Dynamic cohesion
measures for object oriented
software Journal of system
Architecture 57. 2011; 452–462p.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.worldqualityreport.com.
http://link.springer.com/chapter/10.
http://arxiv.org/ftp/arxiv/papers/12
http://www.novapdf.com/
http://www.novapdf.com/

13 Page 1-13 © MAT Journals 2015. All Rights Reserved

Journal of Computer Science Engineering and Software Testing
Volume 1 Issue 1

13. Object Oriented Design Principle

http://www.oodesign.com/design-

principles.html.

Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)

http://www.oodesign.com/design-
http://www.novapdf.com/
http://www.novapdf.com/

